DEVELOPMENT APPLICATION

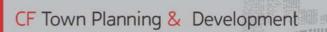
LOTS 8 & 4 (NO.293 & 295) OXFORD STREET, LEEDERVILLE

PROPOSED SIX (6) GROUPED DWELLINGS CITY OF VINCENT

Prepared for

Daniel Cassettai Design and Siamos Development for the construction of six (6) new grouped dwellings (two storey) on Lots8 & 4 (No.293 & 295) Oxford Street, Leederville.

Prepared by


CF Town Planning & Development Planning & Development Consultants

Address: 3/1 Mulgul Road, Malaga WA 6090 Tel: 92492158 Mb: 0407384140 Email: <u>carlof@people.net.au</u>

Carlo Famiano Director CF Town Planning & Development

Name	Position	Document Revision	Date
Mr Carlo Famiano	Town Planner	Planning Report	4 March 2024

All rights are reserved by CVF Nominees Pty Ltd trading as CF Town Planning & Development. Other than for the purposes of and subject to conditions prescribed under the Copyright Act 1968 (C), no part of this report may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or otherwise, without the prior written permission of CF Town Planning & Development.

4 March 2024

Chief Executive Officer City of Vincent PO Box 82 LEEDERVILLE WA 6902

Dear Sir/Madam

APPLICATION FOR DEVELOPMENT APPROVAL PROPOSED SIX (6) GROUPED DWELLING (TWO STOREY) LOTS 8 & 4 (No.293 & 295) OXFORD STREET, LEEDERVILLE CITY OF VINCENT

We act on behalf of Daniel Cassettai Design and Siamos Developments as their consultant town planners and refer to the Application for Development Approval lodged with the City of Vincent seeking the City's approval for the construction of six (6) new grouped dwellings on Lots 8 & 4 (No.293 & 295) Oxford Street, Leederville to provide much needed housing within the Leederville & Mount Hawthorn localities in close proximity various Activity Centres.

In assessing this application, it is requested that the City of Vincent give due consideration to the following information prepared in support of the proposed development on the land:

LOCATION & PROPERTY DETAILS

Location

Lots 8 & 4 are located within the northern part of the Leederville locally, approximately 750 metres north of the Leederville Activity Centre (core area) and approximately 800 metres south of the Mount Hawthorn Activity Centre (see Figure 1 – Location Plan).

A review of the immediate locality has identified that the subject land is located within a wellestablished and well serviced part of Leederville, with convenient access to the following key nodes:

- i) Various public open space reserves, including access to Britannia Reserve and Loftus Recreation Centre;
- ii) High frequency public transport networks (i.e. bus routes). This include bus services along Oxford Street and easy access to the Leederville Train Station (see Figure 5 Public Transport Network);
- iii) A comprehensive regional road network (i.e. Oxford Street, Vincent Street, Scarborough Beach Road with easy access to the Mitchell Freeway);
- iv) Access to a regional pedestrian/cycle network along the existing road network and along the Mitchell Freeway reserve, with a comprehensive pedestrian path network along the local street network;
- v) Access to various schools (both private and public schools); and

vi) Mount Hawthorn and Leederville Activity Centres, which includes a variety of facilities such as medical, retail, entertainment, service commercial use and employment opportunities. The subject land also enjoys good access to the Perth Central Business District (CBD).

Given the above, this application seeks the relevant development approval for the construction of six (6) new grouped dwellings on the subject land to provide much needed housing and housing diversity within the Leederville locality, in close proximity to a key activity centres, a variety of amenities and to public transport.

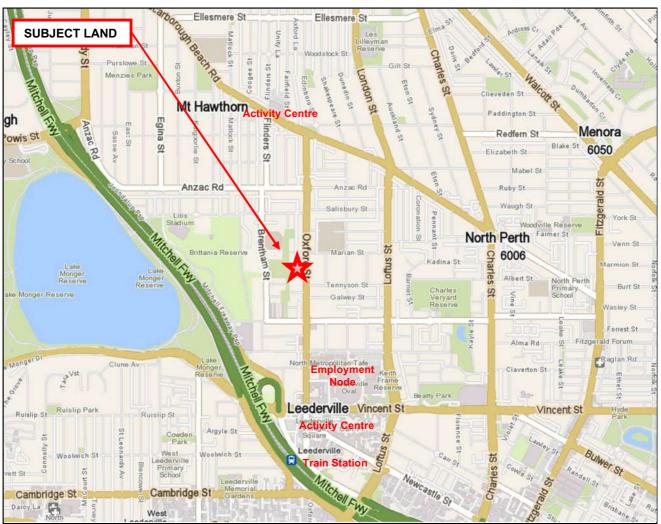


Figure 1 – Location Plan

Property Details

Lots 8 & 4 are rectangular in shape, comprise a total combined area of 1,024m² and contains an excessive fall in natural ground levels (NGL) from 10.08 metres along the land's front boundary to 8.39 metres along the land's rear boundary, which equates to a fall in NGL down/across the site of 1.69 metres (see site feature survey).

The subject land comprises a number of physical improvements including a single detached dwelling on each lot, sealed driveways and boundary fencing (see Figure 2 – Aerial Site Plan & Figure 3). This application proposes that all physical improvements on both Lots 8 & 4 will be removed to accommodate the new grouped dwelling development.

The existing dwellings and associated structures on the subject land is not identified on the City of Vincent's Municipal Heritage Inventory (MHI) and can therefore be removed subject to the issuance of a demolition permit by the City.

Figure 2 – Aerial Site Plan

Figure 3 – Existing dwellings on the subject land.

The verge area abutting the subject land contains one (1) street trees, which will be retained as part of this application (see Figure 2 – Aerial Site Plan). It is also observed that this part of the Oxford Street road reserve comprises extensive on-street car parking that could be used by visitors attending the subject land.

ESSENTIAL SERVICES

Lots 8 & 4 are served by an extensive range of essential service infrastructure including power, water, reticulated sewerage, stormwater drainage, gas and telecommunications (see Figure 4).

Figure 4 – The subject land is well serviced (MNG Mapping)

The subject land is also served by an efficient local and district road network with convenient access to Scarborough Beach Road, Oxford Street, Vincent Street and the Mitchell Freeway. Public transport is available along various nearby roads, including a service along Oxford Street and easy access to the Leederville Train Station (see Figure 5 – Public Transport Network).

The subject land is also well served by a pedestrian path network, including a regional cycle network along the Mitchell Freeway. It is contended that the subject land's good access to public transport and a pedestrian path network will provide an alternative form of transport for the future occupants and visitors to the development.

Figure 5 – Public Transport (bus routes shown in pink, with stops shown as orange dots - MNG Mapping)

PROPOSED DEVELOPMENT

This application proposes the demolition of all existing physical improvements on the subject land and the construction of six (6) new grouped dwellings of a two (2) storey nature. The key details of the proposed development include the following:

- i) Each dwelling will comprise three (3) bedrooms and two (2) bathrooms;
- ii) Each dwelling will comprise a double (two car) garage and a storeroom. It should be noted that all vehicular access for development will be from one (1) central common driveway along the land's Oxford Street frontage;
- iii) Constructions of a visually permeable fence along the land's front boundary with Oxford Street to provide an element of security for the future occupants of the development;
- iv) Installation of landscaping throughout the site; and
- v) The dwelling will include the use of varying materials, a varying pallet of colours and varying setbacks/articulation to enhance the appearance of the development when viewed from the public realm (see Figure 6).

The lots will be amalgamated as part of the future development on the land.

Figure 6 – The front elevation of the proposed development.

STATUTORY REQUIREMENTS

Metropolitan Region Scheme

Lot 8 & 4 are currently classified 'Urban' zone under the Metropolitan Region Scheme (MRS). It should be noted that the zones and reservations prescribed by the MRS are broad categories only that are intentionally not precisely defined or limited in order to enable a flexible approach to town planning. The following definition is provided as a guide to its stated purpose/s in the MRS:

"Urban Zone - Areas in which a range of activities are undertaken, including residential, commercial recreational and light industry."

The proposed development and use of the land for grouped dwelling purposes is considered to be consistent with the defined intent of its current 'Urban' zoning classification under the MRS and has scope to be approved.

City of Vincent Local Planning Scheme No.2

Lots 8 & 4 are classified 'Mixed Use' zone under the City of Vincent's current operative Local Planning Scheme No.2 (LPS No.2) with a residential density coding of R100. In addition, the subject land is located within the 'Leederville Precinct'.

Under the terms of the City's LPS No.2 the development and use of any land classified 'Residential' zone for 'Grouped Dwelling' purposes is listed as a permitted ("P") use.

According to the City of Vincent's Local Planning Policy No.7.1.1 entitled 'Built Form', the subject land is identified as being within the 'Activity Corridor' built form area and comprises an allowable building height of four (4) storeys. Furthermore, LPP No.7.1.1 allows for a nil primary and secondary street setback.

Following discussions with the City of Vincent, it was advised that the required lot boundary setbacks calculations will be as per the R-Codes (i.e. Table 2A & 2B of Volume 1) and that the provision prescribed within Clause 1.2 of the City's LPP No.7.1.1 are only due regard and not required to be addressed.

Council's stated objectives for all land classified 'Mixed Use' zone under LPS No.2 are as follows:

- To provide for a wide variety of active uses on street level which are compatible with residential and other non-active uses on upper levels.
- To allow for the development of a mix of varied but compatible land uses such as housing, offices, showrooms, amusement centres, eating establishments and appropriate industrial activities which do not generate nuisances detrimental to the amenity of the district or to the health, welfare and safety of its residents.
- To provide for a compatible mix of high density residential and commercial development.
- To promote residential use as a vital and integral component of these mixed use zones.
- To ensure development design incorporates sustainability principles, with particular regard to waste management and recycling and including, but not limited to, solar passive design, energy efficiency and water conservation.
- To ensure the provision of a wide range of different types of residential accommodation, including affordable, social and special needs, to meet the diverse needs of the community.

It is contended that the future grouped dwelling development of the subject land is consistent with the stated objectives for the 'Mixed Use' zone prescribed in LPS No.2 for the following reasons:

- It will provide for a range of housing choice/diversity and allows for an increase in density to service the needs of the community;
- It will contribute to providing a range of different land uses along Oxford Street, by allowing an element of residential land use that will support the commercial/other mixed use developments within the precinct;
- It will provide a use that is compatible with other surrounding uses and will not be a nuisance to the area or have a detrimental impact on the amenity of the locality in terms of health, welfare and safety;
- It will assist with providing a wide range of housing types and densities within the immediate locality, which will cater for varying household structures and demographics;

- It will foster the re-development of the land to provide for significant improvements to the current levels of passive surveillance of the local streetscape, will add to the diversity of housing stock within the immediate locality and provide a development that will include good connectivity between both the public and private realms;
- It will provide for increased usage of the nearby public transport network and support the nearby activity centres;
- It will provide a design that incorporates sustainability principles, including access to natural light, cross ventilation and water conservation;
- It will provide an attractive and safe residential environment comprising affordable, modern and high quality housing within a well-established urban area.

Department of Fire and Emergency Services (DFES)

The subject land has not been identified by the Department of Fire and Emergency Services (DFES) as being located within a bushfire prone area (see Figure 7 – DFES Mapping).

Figure 7 – DFES bushfire mapping

State Planning Policy No.5.4 - 'Road & Rail Noise'

The subject land is not located within close proximity to any regional roads and/or railway network (see Figure 8). As such, this application is not required to address the requirements of State Planning Policy No.5.4 entitled 'Road and Rail Noise' in regard to noise.

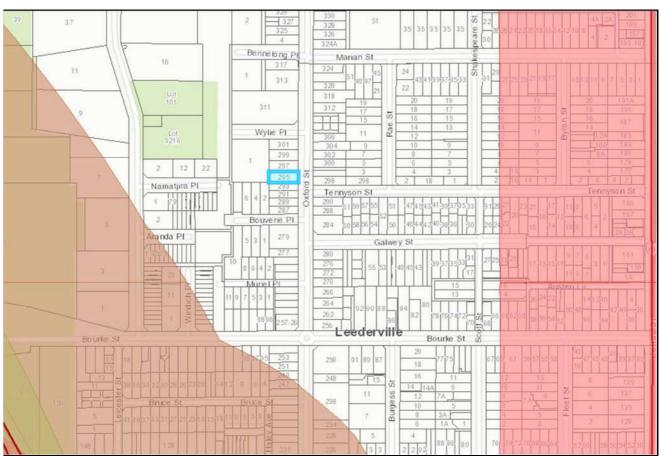


Figure 8 – SPP No.5.4 mapping

URBAN DESIGN STUDY

Lots 8 & 4 have historically been developed and used for 'Single House' purposes, with all physical improvements on the land to be removed. As previously mentioned, the verge area abutting the subject comprises one (1) mature street trees, which is in good condition and will need to be retained as part of the proposed development on the land.

A review of the existing and future character of the immediate locality has concluded that there is no defined or heritage character worthy of retention within this part of the Leederville locality, with a wide range of land uses and development styles/configuration being evident (i.e. range from single dwellings to grouped/multiple dwellings and commercial developments). Given this, it is considered reasonable to conclude that the character of the locality and the local streetscapes is not uniform, is varied in terms of the current built form, does not reflect any specific character or form and is undergoing continued re-development that reflects the varying zonings along Oxford Street. As such, it is contended that the development will provide a positive contribution to the immediate locality, whilst providing a diversity of housing types within close proximity to the Leederville and Mount Hawthorn Activity Centres.

Figures 9 & 10 below illustrate examples of the varying developments/land uses along this part of Oxford Street.

Figure 9 - Examples of Residential developments along Oxford Street in close proximity to the subject land.

Figure 10 – Examples of existing commercial developments along Oxford Street close to the subject land.

It should be noted that the designer/applicant has provided a response to the those matters prescribed within the City of Vincent's 'Development Application – Urban Design Study' form.

DEVELOPMENT STANDARDS

The design of the proposed new grouped dwelling development on the subject land has been formulated with due regard for the relevant 'deemed to comply requirements' of the Residential Design Codes Volume 1 (R-Codes) and the City of Vincent's current operative Local Planning Scheme No.2 (LPS No.2) including any relevant Local Planning Policies (including the City's LPP No.7.1.1 entitled 'Built Form') with the exception of the following:

- a) R-Code Element 5.1.3 C3.1 'Lot boundary setback';
- b) R-Code Element 5.1.3 C3.2 'Lot boundary setback' (buildings on boundary);
- c) R-Code Element 5.3.1 C1.1 'Outdoor living area';
- d) R-Code Element 5.3.3 C3.2 'Parking';
- e) R-Code Element 5.3.7 C7.2 & C7.3 'Site works'; and
- f) City of Vincent Local Planning Policy 7.1.1, Clause 1.4 'Landscaping'.

The following table provides justification for those aspects of the proposed new grouped dwelling development on the subject land seeking a variation to the 'deemed to comply requirements' of the relevant planning framework.

Table 1 – Justification

DEVELOPMENT STANDARD & 'DESIGN PRINCIPLES' OR 'LOCAL HOUSING OBJECTIVES'	PROPOSED VARIATION TO 'DEEMED TO COMPLY REQUIRMENTS'	JUSTIFICATION
 R-Code Element 5.1.3 C3.1 – 'Lot boundary setback' P3.1 Buildings set back from lot boundaries or adjacent buildings on the same lot so as to: reduce impacts of building bulk on adjoining properties; provide adequate direct sun and ventilation to the building and open spaces on the site and adjoining properties; and minimise the extent of overlooking and resultant loss of privacy on adjoining properties. 	 The application proposes the following aspects of the new development on the subject land do not meet the 'deemed to comply requirements' of Element 5.1.3 C3.1 of the R-Codes: i) Unit 3 & 4 ground floor will comprise a 1.258 metre setback from the western rear boundary in lieu of 1.5 metres; ii) Unit 3 ensuite/bath wall (upper floor) will comprise a 1.235 metre setback from the southern side boundary in lieu of 1.5 metres; and iii) Unit 4 ensuite/bath wall (upper floor) will comprise a 1.235 metre setback from the southern side boundary in lieu of 1.5 metres; and iii) Unit 4 ensuite/bath wall (upper floor) will comprise a 1.235 metre setback from the northern side boundary in lieu of 1.5 metres. 	 The proposed lot boundary variations for each dwelling (i.e. max 265mm) as considered to be minor and will not have an adverse impact on the adjoining properties and/or the streetscape in terms of bulk and scale. Furthermore, the variations can be attributed to the excessive fall in natural ground levels down the site which has resulted in higher wall height calculations. The proposed development of the subject land complies with the visual privacy provisions of the R-Codes. The offending walls comprise sufficient setback from the street to limit any impact on the streetscape in terms of bulk and scale. In fact, the parapet walls proposed as part of each dwelling will assist with screening some of the lot boundary setbacks from being visible from the street. Each dwelling has been designed to provide adequate separation with the existing dwellings on the adjoining properties. The proposed development on the subject land will comprise large separation between the upper floor of each dwelling to reduce the overall bulk and scale of the development when viewed from the adjoining properties. In addition, the separation provides an element of articulation. The shadow cast by the proposed development over the adjoining northerm property is considered to be acceptable within the 'Mixed Use' zone and will not adversely impact access to natural light and ventilation for the existing dwellings on the adjoining parties. The proposed development has been designed to meet the needs of the future occupants of each dwelling and provide adequate space/outdoor living area. Those portions of the development on the subject land comprising reduced setbacks from the western rear boundary will abut the side setback for the existing grouped dwelling on adjoining Lot 9 (No.2) Bouverie Place and the rear yard area of the existing grouped dwelling on adyoining Lot 44 (No.1) Wylie Place (see Figure 2 – Aerial Site Plan).Given the minor

		dualliana an adiaining Late 0.8.44
		 dwellings on adjoining Lots 9 & 44. 9. Those portions of the proposed development comprising a reduced setback from the southern side boundary will abut the front setback, side setback and extensive rear yard area of the existing single detached dwelling on adjoining Lot 7 (No.291) Oxford Street (see Figure 2 – Aerial Site Plan). As previously mentioned, the setback variation is minor (i.e. 265mm) and that the adjoining property is likely to be re-developed in the future given its location within the 'Mixed Use' zone. As such, it is contended that the proposed development on the subject land will not have an adverse impact on the key outdoor living area associated with the existing dwelling on adjoining Lot 7 and it will not impede and restrict any future development on the adjoining lots.
		 10. Those portions of the proposed development comprising a reduced setback from the northern side boundary will abut the side setback area of the existing single detached dwelling on adjoining Lot 3 (No.297) Oxford Street which contains extensive vegetation along the boundary with the subject land that will screen the new development from being clearly visible (see Figure 2 – Aerial Site Plan). Furthermore, the proposed development on the subject land will not cast a shadow over the adjoining northern property at 12 noon on 21 June (i.e. winter solstice). As such, it is contended that the proposed development on the subject land will not have an adverse impact on any key habitable spaces associated with the existing dwelling on adjoining Lot 3. Like the adjoining southern lot, adjoining Lot 3 is likely to be re-developed in the future to accommodate a large scale development given the 'Mixed Use' zoning. As such, the proposed setback variation for the proposed development from the northern side boundary will not impede or restrict any further development on adjoining Lot 3. Having regard for the above it is contended that those portions of the proposed new grouped dwelling development on the subject land comprising reduced setbacks from the side and rear lot boundaries satisfy the 'design principles criteria' of Element 5.1.3
		of the R-Codes, will not have a negative impact on the adjoining properties or the streetscape and may therefore be approved by the City.
 5.1.3 C3.2 - Lot boundary setback (building on boundary) P3.2 Buildings built up to boundaries (other than the street boundary) where this: makes more effective use of space for enhanced privacy for 	The application proposes that the following aspects of the proposed grouped dwelling development on the subject land do not meet the 'deemed to comply requirements' of Element 5.1.3 C3.2 of the R-Codes: i) Those portions of the proposed	 The variation to the wall length (i.e. an additional length of 800mm) along the side boundaries are considered to be minor. In addition, the part of the parapet walls comprising a height greater than 3.5 metres can be attributed to the excessive fall in natural ground levels down the site resulting in only part of the wall containing a maximum height of 4.1 metres and the balance portion comprising a lesser height. In addition to the above point, the parapet walls are setback from the street, in lieu of an allowable nil front setback. As such, the extent of variations to the parapet wall length and height will not have an adverse impact on the streetscape and/or the adjoining properties in terms of bulk and scale.

 the occupant/s or outdoor living areas; does not compromise the design principle contained in clause 5.1.3 P3.1; does not have any adverse impact on the amenity of the adjoining property; ensures direct sun to major openings to habitable rooms and outdoor living areas for adjoining properties is not restricted; and positively contributes to the prevailing development context and streetscape. 	 development to be built up to the northern and southern lot boundaries will comprise an overall length of 27.6 metres in lieu of 26.8 metres; and ii) Those portion of the proposed development to be built up to the side boundaries will comprise a maximum height of 4.1 metres in lieu of 3.5 metres. 	 It should be noted that the development has been designed to bench each dwelling down the slope of the land to limit any impact on the adjoining properties. The use of a parapet wall for the new development on the subject land allows for improved use of the land and provides for greater internal/external living areas. In addition to the above point, the use of parapet walls for the development has allowed for the provisions of much needed housing within the Leederville area. The parapet wall will assist with providing improved privacy for each dwelling. In fact, the proposed development on the subject land complies with the visual privacy provisions of the R-Codes. Given the minor variations being sought for the parapet walls along the lot boundaries, it is contended that the proposed development on the subject land will not adversely impact any key habitable spaces on the adjoining properties (see Figure 2 – Aerial Site Plan) and will not impede or restrict any future development on the adjoining properties given the 'Mised Use' zoning of the land. Having regard for the above it is contended that the portion of the proposed grouped dwelling development on the subject land to be built up to the side boundaries satisfy the 'design principles criteria' of Element 5.1.3 of the R-Codes, will not have an adverse impact on the adjoining properties or the local streetscape and may therefore be approved by the City.
 R-Code Element 5.3.1 C1.1 – 'Outdoor living area' "P1.1 Outdoor living areas which provide spaces: capable of use in conjunction with a habitable room of the dwelling; open to winter sun and ventilation; and optimise use of the northern aspect of the site." 	 The application proposes that the following aspects of the proposed development on the subject land do not meet the 'deemed to comply requirements' of Element 5.3.1 C1.1 of the R-Codes: i) The outdoor living area for Units 1 & 6 will be located within the front setback area in lieu of being located behind the front setback line; and ii) The outdoor living areas for each dwelling will comprise a minimum dimension of less than 4 metres. 	 The outdoor living area for each dwelling has been designed to be used in conjunction with a habitable room (i.e. dining room), providing a functional/usable entertaining area for the future occupants. The location of the outdoor living area for Units 1 & 6 within the front setback area will provide for activation of the street and foster an element of social interaction between both the public and private realms. This is a good planning outcome. In addition to the above point, the outdoor living area for each dwelling will be located along the common driveway, which will provide an element of interaction and passive surveillance for the occupants of the development. It is noted that the new Medium Density Codes being re- introduced by the State Government in April 2024 will allow for a minimum dimension of 3 metres. Given this, it should be acknowledged that the planning framework has recognized that a usable space. Despite the variation to the minimum required dimension of the outdoor living area for each dwelling, the area is usable and will allow for the planting of a mature tree in each outdoor living area to enhance the amenity of the area. In fact, the area of the outdoor living area for each dwelling complies with the R- Codes.

6. A number of dwellings within the development will provide some coverage of the outdoor living area to provide protection from the elements/weather for the occupants of each dwelling, therefore allowing the area to be used all year round. 7. Sufficient open space is provided for each dwelling to meet the needs of the future occupants and allow for adequate separation between the proposed development on the subject land and the existing dwellings on the adjoining lots. 8. Each dwelling will be provided with a drying court area separate to the dedicated outdoor living area. The separation of these areas will improve the amenity and functionality of each dwelling and minimizes potential constraints to the use of the dedicated outdoor living area. 9. The proposed outdoor living areas for four of the six dwellings will be located to capture the northern winter sun. 10. It is also noted that the City of Vincent, along with other local authorities, have approved variations to the minimum required dimension and the location of an outdoor living area within the front setback area in the past where the development has merit. In light of the justification above, it is viewed that the proposed development on the subject land has merit and that the variations could be granted in this instance. Having regard for the above it is contended that the location of the outdoor living area for Units 1 & 6 within the front setback area and the variation to the minimum dimension for the outdoor living area for each dwelling satisfies the 'design principles criteria' of Element 5.3.1 of the R-Codes, will be usable for to the future occupants of each dwelling and may therefore be approved by the City. **R-Code Element 5.3.3** It should be noted that the subject land is located in close The application 1. C3.2 - 'Parking' proposes that proximity to public transport and a comprehensive pedestrian the grouped dwelling path network. P3.1 Adequate development car on the 2. The proposed development meets the 'deemed to comply parking is to be subject land does not requirements' of Element 5.3.3 C3.1 ('Parking') of the R-Codes provided include the provision of on-site in in terms of residents parking bays (i.e. two bays per dwelling). with any visitor parking bays accordance projected need related in lieu of two (2) visitor 3. The proposed dwellings within the development are relatively to: bays required by the small compared to the existing single dwelling type 'deemed to comply developments within the immediate locality. Given this, it is • the type, number and requirements' of anticipated that the dwellings will not generate the need for size of dwellings; Element 5.3.3 C3.2 of greater on-site parking that reflects a single dwelling, as the R-Codes · the availability of onthe (for dwellings are unlikely to accommodate large families that & street and other offbetween 5 8 would typically generate greater traffic movements and parking street parking; and dwellings). demand. • the proximity of the 4. In addition to the above point, it is anticipated that the dwellings proposed will tend to cater for couples or small families only. Therefore, development reducing the parking demand for the site and potentially to public transport and allowing a visitor to park within the garage of the dwelling. other facilities. 5. The Oxford Street road reserve contains on-street car parking on both sides of the road which is more than capable of catering P3.2 Consideration for any visitor parking demand generated by the development may be given to a

reduction in the minimum number of on-site car parking spaces for grouped and multiple dwellings provided:

- available street parking in the vicinity is controlled by the local government; and
- the decision-maker is of the opinion that a sufficient equivalent number of on-street spaces are available near the development

P3.3 Some or all of the required car parking spaces located off-site, provided that these spaces will meet the following:

- the off-site car parking area is sufficiently close to the development and convenient for use by residents and/or visitors;
- ii. any increase in the number of dwellings or possible plot ratio being matched by a corresponding increase in the aggregate number of car parking spaces;
- iii. permanent legal right of access being established for all users and occupiers of dwellings for which the respective car parking space is to be provided; and
- *iv. where off-site car parking is shared*

on the subject land. Figures 11 & 12 below illustrates the existing on-street parking adjacent the subject land.

- 6. The use of the on-street parking for visitor needs generated by the development on the subject land will assist with providing less traffic movements on-site (i.e. provide improved safety of the occupants of the development) and will facilitate improved security for the development.
- 7. There are amble public transports services within close proximity to the subject land (including along Oxford Street). Access to the public transport network provides occupants and visitors to the proposed development with an alternative mode of transportation.
- 8. The subject land is well connected with pedestrian foot paths and a dedicated cycle lane along Oxford Street that provide safe access to and from the site for pedestrians and cyclists.
- 9. It should be noted that the new Medium Density R-Codes that are due to be re-introduced will only require one (1) resident parking bay per dwelling and one (1) visitor bay. This will result in the proposed development providing greater than the required on-site car parking for the residents. The additional resident on-site car parking will provide an opportunity for visitor parking for each individual dwelling.

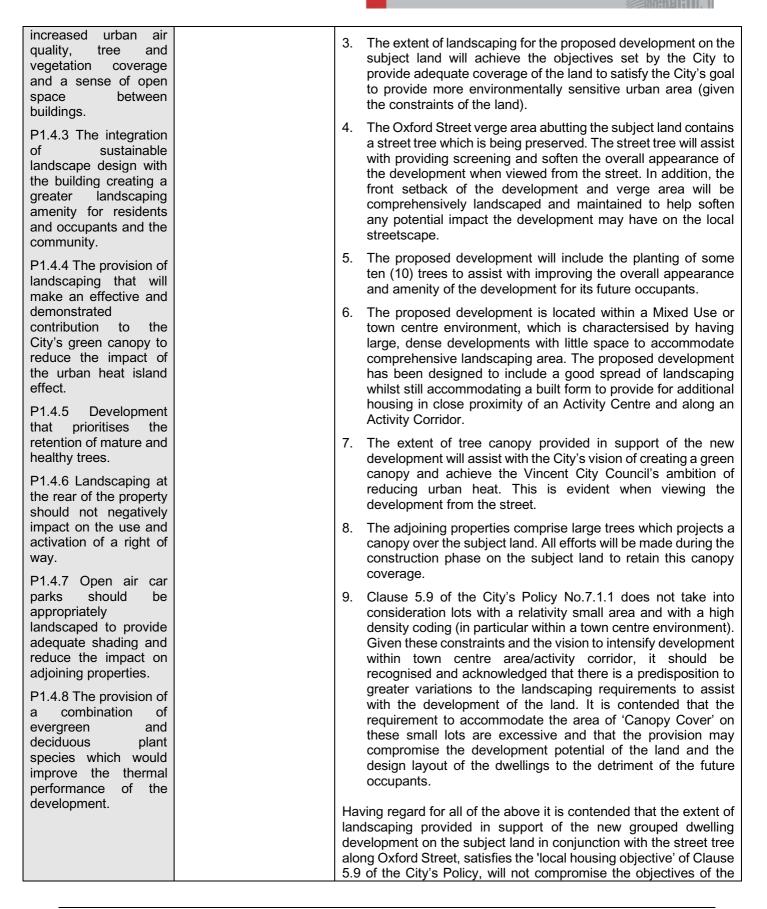

Figure 11 – The existing on-street parking along both sides of Oxford Street.

Figure 12 – Oxford Street contains on-street parking, a pedestrian path network and bicycle land.

with other uses, the total aggregate parking requirement for all such uses, as required by the R- Codes and the scheme being provided. The number of required spaces may only be reduced by up to 15 per cent where the non-residential parking occurs substantially between 9 am and 5 pm on weekdays.		Having regard for the above it is contended that the absence of an on-site visitor car parking bays for the proposed grouped dwelling development on the subject land satisfies the 'design principles criteria' of Element 5.3.3 of the R-Codes and may therefore be approved.
 R-Code Element 5.3.7 C7.2 & C7.3 – 'Site works' P7.1 Development considers and respond natural features of the requires minimal excava P7.2 Where excavation/fill is necessary, all finished levels respecting the natural ground level at the lot boundary of the site and as viewed from the street. 7.3 Retaining walls that result in land which can be effectively used for the benefit of residents and do not detrimentally affect adjoining properties and are designed, engineered and landscaped having due regard to clauses 5.3.7 and 5.4.1 	 Element 5.3.7 C7.2 & C7.3 of the R-Codes: i) Retaining wall/fill along the southern side boundary will comprise a maximum height of 857mm above natural ground level (NGL) in lieu of an allowable height of 500mm above NGL; 	 The variations to the site works (i.e. 357mm maximum) are generally to the rear portion of the land and are relatively minor in nature. In addition, the variation can be attributed to the excessive fall in levels across/down the site of 1.69 metres. Given this variation in the natural ground level across the site, the new development has been designed to bench the dwellings down the site to address the fall of the land. This has resulted in minimizing any adverse impact on the adjoining properties. The extent of fill above natural ground level will not impact any existing and developments on the adjoining properties. Detailed engineering drawings will be provided to the City at the building permit stage. Despite the variation to the fill levels along the northern and southern lot boundaries, it is contended that the retaining walls will not have any adverse impacts on the streetscape in terms of bulk and scale. The retaining walls will not be clearly visible from Oxford Street. The location of the retaining wall along the lot boundaries provide for the effective use of all available space and the creation of adequate/usable external yard area to benefit the future occupants of the dwellings. The proposed development on the subject land will not adversely impact access to light and ventilation for the existing dwellings on the adjoining properties. A 1.8 metre high dividing fence will be constructed on top of the retaining wall along the side boundaries to ensure that each dwelling on the subject land do not result in any overlooking of the adjoining residential properties from the external yard areas. Given the extent of fall in natural ground levels across the land, it could be expected that new development within the R100 areas will require large retaining walls fill to address the undulating topography and excessive fall in levels.

		 development on the subject land complies with the maximum building height prescribed within the R-Codes and the City's Local Planning Policy. In fact, the maximum height of the proposed development is 8.8 metres, whereas the City's Policy allows a building height of 13.3 metres along Oxford Street. 10. Those portions of the site works for the new grouped dwelling development on the subject land to be built up to the southern side boundary will the abut the side setback area and extensive rear yard area of the existing single detached dwelling on adjoining Lot 7 (No.291) Oxford Street (see Figure 2 – Aerial Site Plan). Given the minor nature of the variations and the excessive fall in natural ground level down the site, it is contended that the proposed development on the subject land will not have an adverse impact on the existing dwelling on
		 adjoining Lot 7. 11. Those portions of the site works for the development on the subject land to be built up to the northern side boundary will abut the side setback area and extensive rear yard area of the existing single detached dwelling on adjoining Lot 3 (No.297) Oxford Street, which comprises vegetation along the boundary (see Figure 2 – Aerial Site Plan). As such, it is contended that the proposed site works (retaining wall/fill) will not have any adverse impact on the sensitive areas associated with the existing dwelling on adjoining Lot 3.
		12.In addition to the above two points, it is contended that the adjoining properties currently comprise older developments and that these sites are likely to be redeveloped in the future to reflect the R100 density coding (i.e. could be developed to accommodate a mixed use development or a large multiple dwelling development). Given this, the impact of the proposed development on the subject land is unlikely to impact the future development of these lots.
		Having regard for the above it is contended that the proposed retaining wall and fill to be built up to the side boundaries of the subject land satisfies the 'design principles criteria' of Element 3.3.7 of the R-Codes, is a result of the constraints of the land, will assist with providing a level/usable site, will not have a detrimental impact on the adjoining properties or local streetscape and may therefore be approved.
Local Planning Policy No.7.1.1 Clause 1.4 – 'Landscaping' P1.4.1 Landscaping is to be designed to reduce the impact of development on adjoining residential zones and public spaces. P1.4.2 Landscaping	The application proposes that the proposed development does not comprise 80% canopy coverage along the side boundaries as required by the 'deemed to comply requirements' of Clause 1.4 of the City's Policy.	 The proposed variation to the extent of 'Canopy Cover' along the side boundaries is unlikely to have a detrimental impact on the amenity of the local streetscape or any adjoining properties, as the new development has been designed to include the planting of a mature trees throughout the site and the front setback area to enhance the appearance of all dwellings when viewed from the street. The City's Policy allows for parapet walls to be built up to the side boundaries in accordance with the R-Codes, which is two thirds of the boundary length and does not allow for extensive planting along the side boundaries. As such, the landscaping provision of the City's Policy does not take into account the

	City's policy and may therefore be supported and approved by the City.

CONCLUSION

This portion of Oxford Street in Leederville is currently experiencing a transitional phase, wherein the older low density housing stock is being replaced by new higher density developments to reflect the 'Mixed Use' zoning and R100 density coding of the area. In addition, the development activity will assist with providing for additional housing in close proximity to public transport and the nearby Activity Centres.

The proposed development has been designed to reflect the changing nature, built form and character within the immediate locality, which includes a number of grouped and multiple dwelling developments to achieve the implied objectives of the density coding imposed by the City of Vincent and to reflect the strategic planning framework set by the State Government to provide much needed housing and housing diversity within a well service and established areas.

In light of the above information and justification, we respectfully request the City's favorable consideration and approval of the Application for Development Approval for the construction of a new grouped dwelling on Lots 8 & 4 (Nos.293 & 295) Oxford Street, Leederville in accordance with the pans prepared in support of the application.

Should you have any queries or require any additional information regarding any of the matters raised above please do not hesitate to contact me on 0407384140 or carlof@people.net.au.

CF Town Planning & Development Planning & Development Consultants

Life Cycle Assessment Report Residence 293 and 295 Oxford Street Leederville Oxford Townhouses

Date: 5 March 2024 Author: Daniel Cassettai Report Id: Uncontrolled Document

This LCA Study was conducted as part of the Oxford Townhouses project. The LCA modeling within eTool is being managed by RapidLCA. For more information see contact details below.

RapidLCA 18 Howard St Perth info@etoolglobal.com (08) 9467 1664

eTool Disclaimer

The predictions of embodied and operational impacts (including costs) conducted in eTool software, by their very nature, cannot be exact. It is not possible to accurately track all the impacts associated with a product or service over the life of a building or structure. eTool software and the modelling workflow has been built and tested to enable informed decisions when comparing design options. Environmental impact coefficients and generic costs do not necessarily correspond to those of individual brands of the same product or service due to differences within industries in the way these products and services are delivered.

This LCA study has not been reviewed and as such does not meet the relevant section of the ISO14044 requirements. Caution should be taken when interpreting the LCA study report.

eTool PTY LTD cannot make assurances regarding the accuracy of these reports for the above reasons. © 2024 eTool PTY LTD, RapidLCA All rights reserved.

Executive Summary

This Life Cycle Assessment has been completed for the Residence, located at 293 and 295 Oxford Street Leederville. The has been conducted for RapidLCA, the lead author is Daniel Cassettai The goal of this study is to profile and improve the environmental performance of the construction works. The study has been conducted in accordance with ISO 14044 and EN15978.

About the Design

The following designs were modelled in these reports:

- **Proposed Design**: The proposed design at the time the modelling occurred.
- Benchmark: An equivalent benchmark design (or weighted statistical mix of designs) with conventional products, construction methods and use patterns.

Results

The results of the study are shown in the table below with savings highlighted in green text and increased impacts highlighted in red.

Characterised Impacts per Occupant per	Year	Benchmark	Proposed Design	Proposed Design Savings
Environmental Impacts				
🖶 Global Warming Potential Total, GWP	kg CO ₂ eq	3.21E+3	1.47E + 3	54.23%
Özone Depletion Potential, ODP	kg CFC-11 eq	2.03E -4	2.38E -4	-17.47%
Acidification Potential for Soil and Water, AP	kg SO ₂ eq.	7.34E 0	5.12E 0	30.2%
Eutrophication potential, EP	kg PO ₄ eq	2.90E 0	2.48E 0	14.42%
🔓 Photochemical Ozone Creation Potential, POCP	kg ethylene	5.62E -1	3.74E -1	33.48%
🗺 Abiotic Depletion Potential - Elements, ADPE	kg antimony	6.39E -2	5.14E -2	19.67%
📅 Abiotic Depletion Potential – Fossil Fuels, ADPF	MJ	3.94E +4	1.76E +4	55.23%
👹 Global Warming Potential Biogenic, GWP B	kg CO ₂ eq	-6.62E +1	-3.09E +1	53.29%

Analysis

The report shows that the Proposed Design has lower Global Warming Potential Total, GWP impact than the Benchmark Design. The **Non-integrated Energy (B6+)** GWP Impacts are the most dominant life cycle module in the Proposed Design Design followed by the **Product Stage (A1A3)** and then **Replacement (B4)**.

Further analysis reveals:

- The Superstructure is the highest impact construction category,
- Domestic Water Heating is the highest operational impact by demand category,
- The Electricity is this highest impact operational impact by supply source,
- Glazing | Windows | Aluminium Framed | No Thermal Break | Single Glaze | Domestic 50% Opening is the highest impact material category,
- Electrical Equipment, Small with transport and tradestaff, Electricity is the highest people and equipment impact

Two strategies were modelled in the Proposed Design, the **RIBA Phase 4 – Technical Design 1** strategy had the highest saving , followed by **RIBA Phase 4 – Technical Design 2**. See the below table for details.

Scenario	GWP	ÖDP	AP	>₩₩₽ EP	C POCP	ADPE	H ADPF	GWP B
<improved design=""></improved>								
RIBA Phase 4 – Technical Design 1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RIBA Phase 4 – Technical Design 2	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
<proposed design=""></proposed>								

Strategies included in Proposed Design
 Strategies not included in Proposed Design

Proposed Design Performance against Benchmark

Global Warming Potential Total, GWP

Photochemical Ozone Creation Potential, POCP

Abiotic Depletion Potential -Elements, ADPE

Ozone Depletion Potential, Acidification Potential for Soil ODP and Water, AP

and Water, AP

Abiotic Depletion Potential -Fossil Fuels, ADPF

Global Warming Potential

Life Cycle Assessment Report Oxford Townhouses 293 and 295 Oxford Street Leederville Tuesday, March 5, 2024 UTC

Table Of Contents

1 Introduction

- 2 Goal of the Study
- 3 Scope of the Study
 - **3.1 Functional Unit**
 - 3.2 System Boundary
 - **3.3 Environmental Indicators**
 - 3.4 Cutoff Criteria
 - 3.5 Allocation
 - 3.6 Independent Review
 - 3.7 System Description Introduction
 - 3.8 Building Characteristics Table
 - 3.9 Structure Scope Table
 - 3.10 Operational Scope Table
- **4 Inventory Analysis**
- 4.1 Templates Comparison
- 4.2 eTool software
- 4.3 Data Quality
- 4.4 Completeness
- **5 Life Cycle Impact Assessment**
 - **5.1 Environmental Impacts**
- 6 Detailed Analysis
 - 6.1 Global Warming Potential Total, GWP
 - 6.2 Ozone Depletion Potential, ODP
 - 6.3 Acidification Potential for Soil and Water, AP
 - 6.4 Eutrophication potential, EP
 - 6.5 Photochemical Ozone Creation Potential, POCP
 - 6.6 Abiotic Depletion Potential Elements, ADPE
 - 6.7 Abiotic Depletion Potential Fossil Fuels, ADPF
 - 6.8 Global Warming Potential Biogenic, GWP B
- 7 Scenarios Summary Tables
 - 7.1 Proposed Design
- 8 Low Impact Strategies

8.1 Proposed Design Strategies

9 Conclusion

10 Appendix: Environmental Indicators Description

1 Introduction

- -

Managing the environmental impacts that arise from the construction and operation of buildings and infrastructure is of key importance in mitigating the damage caused directly and indirectly on the biosphere. Life Cycle Assessment (LCA) is the leading industry standard in clearly identifying optimum strategies for reducing environmental impacts. This report presents the results of the LCA completed for the Residence, 293 and 295 Oxford Street Leederville.

The study has been conducted in accordance with the following standards:

- International Standards 14040 and 14044.
- European Standard EN 15978: Sustainability of Construction Works Assessment of Environmental Performance of Buildings Calculation Method

The Author of the study is Daniel Cassettai of RapidLCA, and no independent review has yet been completed.

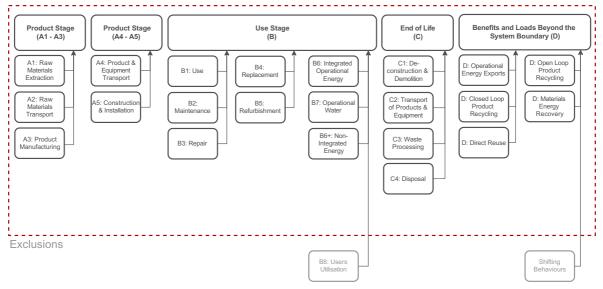
2 Goal of the Study

The goal of this study is to profile and improve the environmental performance of the construction works at 293 and 295 Oxford Street Leederville. The life cycle performance of the project is compared to other designs and as such this is a comparative study. The study has been conducted on assumption the results may be made public.

3 Scope of the Study

The LCA study has been conducted in accordance with the EN 15978 standard to assess the direct and indirect potential environmental impacts associated with the construction works at 293 and 295 Oxford Street Leederville as part of the Oxford Townhouses project.

3.1 Functional Unit


The function of the Building must reflect the core purpose of the asset such that it can be compared accurately to different designs. In this case, the functional focus is the Residence and the chosen functional unit is the provision of this function for one Occupant over one year.

The estimated design life of the design is 55 years which has been adopted for the LCA study period. This takes into consideration the structural service life limit (150 years), as well as redevelopment pressure on the asset such as surrounding density, asset ownership structures, and the architectural design quality.

Note that products with expected service lives of less than the life span of the project are assumed to be replaced at increments reflecting their service life.

3.2 System Boundary

The system boundary, shown in Figure 1, follows guidance given in EN15978.

System Boundary

Figure 1: System Boundary Diagram

3.3 Environmental Indicators

The environmental indicators have been included in the study are detailed in Table 1. For further information regarding the environmental indicators please refer to Appendix A.

Environmental Indicator	Unit	Abbreviation	Characterisation Method
Environmental Impacts			
👩 Global Warming Potential Total, GWP	kg CO ₂ eq	GWP	CML-IA baseline V4.5
🐞 Ozone Depletion Potential, ODP	kg CFC-11 eq	ODP	CML-IA baseline V4.5
Acidification Potential for Soil and Water, AP	kg SO ₂ eq.	AP	CML-IA baseline V4.5
🗯 Eutrophication potential, EP	kg PO ₄ eq	EP	CML-IA baseline V4.5
Photochemical Ozone Creation Potential, POCP	kg ethylene	POCP	Institute of Environmental Sciences (CML)
👼 Abiotic Depletion Potential - Elements, ADPE	kg antimony	ADPE	CML-IA baseline V4.5
🛔 Abiotic Depletion Potential – Fossil Fuels, ADPF		ADPF	CML-IA baseline V4.5
án Global Warming Potential Biogenic, GWP B	kg CO ₂ eq	GWP B	CML-IA baseline V4.5

Table 1: Environmental Indicators Included in LCA study.

3.4 Cutoff Criteria

The EN15978 cut-off criteria were used to ensure that all relevant potential environmental impacts were appropriately represented:

- Mass if a flow is less than 1% of the mass at either a product-level or individual-process level, then it has been excluded, provided its environmental relevance is not of concern.
- Energy if a flow is less than 1% of the energy at either a product-level or individual-process level, then it has been excluded, provided its environmental relevance is not a concern.
- The total of neglected input flows per module, e.g. per module A1-A3, A4-A5, B1-B5, B6-B7, C1-C4 and module D shall be a maximum of 5% of energy usage and mass.
- Environmental relevance if a flow meets the above criteria for exclusion, but is considered to potentially have a significant environmental impact, it has been included. All material flows which leave the system (emissions) and whose environmental impact is higher than 1% of an impact category, have been included.

The Operational Guidance for Life Cycle Assessment Studies (Wittstock et al. 2012) states:

The apparent paradox is that one must know the final result of the LCA (so one can show that the omission of a certain process is insignificant for the overall results) to be able to know which processes, elementary flows etc. can be left out.

The approach taken in this study is to continue modelling smaller inputs until confidence is gained that the criteria is safely met.

3.5 Allocation

Allocation rules follow those of EN15804 as given below:

- Allocation will respect the main purpose of the studied processes. If the main purpose of combined processes cannot be defined (e.g. combined mining and extraction of nickel and precious metals), economic allocation may be used to divide resources and emissions between the products.
- The principle of modularity is maintained. Where processes influence the product's environmental performance during its life cycle, they will be assigned to the module where they occur.
- The sum of the allocated inputs and outputs of a unit process are equal to the inputs and outputs of the unit process before allocation. This means no double counting of inputs or outputs is permissible.

Life Cycle Assessment Report Oxford Townhouses 293 and 295 Oxford Street Leederville Tuesday, March 5, 2024 UTC

3.6 Independent Review

No independent review has been conducted of this study.

3.7 System Description Introduction

The object of the assessment is the Residence, located at 293 and 295 Oxford Street Leederville. The assessment includes all the upstream and downstream processes needed to provide the primary function of the structure from construction, maintenance, operation, and finally demolition and disposal. The inventory includes the extraction of raw materials or energy and the release of substances back to the environment or to the point where inventory items exit the system boundary either during or at the end of the project life cycle.

6 x Two storey Grouped dwellings

The project location is shown in figures 2 and 3.



Figure 2: Location of the project - Global View.

Figure 3: Location of the project - Locality View.

6 Two storey Grouped dwellings

3.8 Building Characteristics Table

Table 2 below shows the key characteristics of the design.

Benchmark

Proposed Design

Design Name	CLCHC Baseline	293 and 295 Oxford Street Leederville
Stories (#)	2	2
Functional Focus	Residence	Residence
Structural Service Life Limit	150	150
Predicted Design Life	55	55
Functional Characteristics		
Dwellings	1	6
Bedrooms	4	18
Occupants	3	15
Total Floor Areas		
Usable Floor Area	214	816
Net Lettable Area	0	0
Fully Enclosed Covered Area	250	1,032
Unenclosed Covered Area	0	0
Gross Floor Area	250	1,032
Usable and Lettable Yield	86 %	79 %

Table 2 : Design Characteristics Compared

3.9 Structure Scope Table

Table 3 shows the structural scope of the inventory collection for the LCA. For further details on structure scope please refer to Appendix B.

Summary Structure Scope Diagram

	Key: 🗸 In Scope 🗸 Partial 🎗	Out of Scop
Category Name	Benchmark Design	Proposed Design
Substructure	\checkmark	\checkmark
Superstructure	\checkmark	\checkmark
Internal finishes	\checkmark	\checkmark
Fittings, furnishings and equipment	✓	\checkmark
Services equipment	✓	\checkmark
Prefabricated buildings and building units	X	X
Work to existing building	×	×
External works	✓	\checkmark
Facilitating works	✓	\checkmark
Project/design team	\checkmark	\checkmark
Undefined	X	×

Table 3 : Structural scope of LCI collection

3.10 Operational Scope Table

Table 4 shows the operational scope of the inventory collection for the LCA. For further details on structure scope please refer to Appendix B.

Operational Scope diagram

	Key: √ In Sco	pe 본 Out of Sco
Category Name	Benchmark Design	Proposed Design
Appliances Dishwashers	\checkmark	\checkmark
Appliances Entertainment	\checkmark	\checkmark
Appliances Laundry Appliances	\checkmark	\checkmark
Appliances Office Workstations	\checkmark	\checkmark
Communications	\checkmark	\checkmark
Cooking and Food Preparation	\checkmark	\checkmark
Domestic Water Heating	\checkmark	\checkmark
Electrical Parasitic Loads	\checkmark	\checkmark
Fire Protection	×	\checkmark
HVAC	\checkmark	\checkmark
Industrial & Manufacturing Equipment	×	\checkmark
Lifts, Elevators and Conveying	×	\checkmark
Lighting	\checkmark	\checkmark
Miscellaneous	×	×
Monitoring, Control and Automation	\checkmark	\checkmark
Power Generation and Storage	\checkmark	\checkmark
Refrigeration	\checkmark	\checkmark
Safety and Security	\checkmark	\checkmark
Swimming Pools	\checkmark	\checkmark
Water Pumping	\checkmark	\checkmark
Water Removal and Treatment	\checkmark	\checkmark
Water Supply	\checkmark	\checkmark
Workshops, Garage & Misc	\checkmark	\checkmark

Table 4: Operational scope of LCI collection

4 Inventory Analysis

The design has been modelled using the available eToolLCD elements, templates and EPDs as shown in Table 5.

	Count in Design					
eToolLCD Item Type	Benchmark	Proposed Design				
Design Templates	118	128				
Equipment and People Elements	175	189				
Material Elements	317	305				
Energy Elements	31	29				
Water Elements	13	13				
EPDs	0	0				

Table 5: Count of elements, templates and EPDs in the design

The eToolLCD library templates are customisable and users may submit templates for validation. The template validation process is undertaken by experienced LCA practitioners and is a process of checking the user inputs and ensuring the assumptions are adequately referenced. Table 6 shows the extent to which validated templates were used in the model.

	Validated (%)					
eToolLCD Item Type	Benchmark	Proposed Design				
Total Design Templates	50.85	53.91				
Equipment and People Elements	54.29	58.2				
Material Elements	40.06	40.66				
Energy Elements	0	0				
Water Elements	0	0				

Table 6: Use of validated templates

4.1 Templates Comparison

The eToolLCD templates found in each design are provided in Table 7.

Parent Template Name	Units	Quantity
Farent Template Name	onits	Proposed Design
Fittings, furnishings and equipment		
Appliances, Residential Average Op&Em	#	
Cooking, Res Electric Oven Induction Stove	#	6
Kitchen Medium sized (incl Equipment)	#	6
Refrigeration, Residential Well Ventilated Fridge Recess	#	6
Standard 1st Bathroom - WC/Shower-bath/Basin/WallTiles	#	15
Facilitating works		
Demolition - Residential (End-of-Life)	#	6
Superstructure		
Door - HollowCoreTimber/SteelJam/Painted	#	42
Door - SolidCoreTimber/SteelJam/Painted (#)	#	12
Roof - TimberTruss/SteelSheeting/25°Pitch	m2	570
Staircase, Concrete, 40Mpa, 2% reo	#	6
Timber frame wall with exterior insulation finishing system (100mm EPS)	m2	1E-06
Upper Floors - Concrete Slab, 172mm, 40MPa, 3.8% reo (m2)	m2	480
Wall, External, Masonry, double brick 90-50-90 insulated with foundations and finishes	m2	402.66
Wall, Internal, Masonry, Single Brick Wall (90mm) uninsulated with foundations and finishes	m2	314.35000
Windows, Residential Aluminium Single Glaze, fly screen	m2	202.02
Services equipment		
Ducted System Air Source Heat Pump for Cooling, higher efficiency (COP/EER 3.8), R410a Refrigerant	#	e
Ducted System Air Source Heat Pump for Heating, Average Efficiency (COP/EER 3.27), R410a Refrigerant	#	e
Electric Instantaneous Hot Water System (HWS_App)	#	6
Electrical Fittings - sockets power points wiring embodied only (m2)	m2	1116
LED Outdoor Lighting (Residential - Ultra High Efficiency 150lm/watt), m2	m2	150
LED Residential Lighting (High Efficiency – 110lm/watt)	#	20
Solar PV System Residential – Zone 3 (Perth Sydney etc)	kW	18
Swimming Pool - Pumps and Filters Ultra Efficient	m2	1E-06
Utilities Connection to Site Residential	#	6
Water tank - steel (embodied)	L	2.4E-05
Water Use and Treatment (eTool Turbo)	#	6
Internal finishes		
Floor Covering - Carpet (glue down/Nylon)	m2	198
Floor Covering - Tiles (ceramic/10mm)	m2	95
Floor Covering - Tiles (ceramic/5mm)	m2	235
Substructure		1
Lowest Floor - Concrete Slab, 100mm, 20MPa, 3.8% reo (m2)	m2	574
External works		
Pool Structure – Concrete	m2	1E-06
Swimming Pool Seasonal Temperature Control - No Pool Cover - Gas	m2	1E-06

Table 7: Templates Comparison (showing master templates only)

4.2 eTool software

eTool software was used to model life cycle impacts of the project. eToolLCD uses third party background processes aggregated as mid-point indicators and stored in a number of libraries within the software which are coupled with algorithms and user inputs to output the environmental impact assessment. A map of user inputs, data sources and algorithms (outputs) is given in Figure 4.

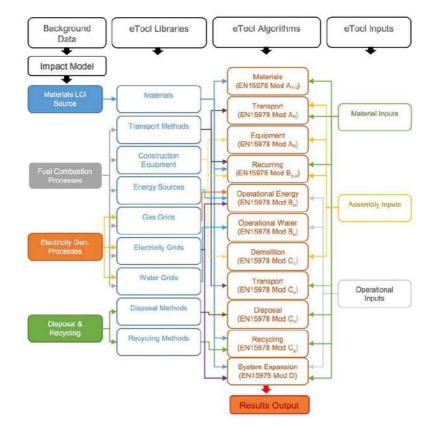


Figure 4: Relationship between LCI background data, eToolLCD software library, inputs and algorithms.

4.3 Data Quality

The data quality requirements for the background data are detailed in Table 8. Each of the criteria has been assessed for compliance and results presented below.

Criteria	Realizeround Data Dequirement	Compliance			
Criteria	Background Data Requirement	Benchmark	Proposed Design		
Temporal Relevancy	For annually fluctuating processes like Grid electricity fuel mixes the datasets must have been updated within the last 2 years. More static processes like materials production must have been updated within the last 10 years. Product specific EPDs must have been updated in the last 5 years.	Failed Grid Passed Materials	Failed Grid Passed Materials		
Geographical Relevancy	The background data should be specifically compiled for the same country (preferable) or continent as the project location.	Passed(Same Country)	Passed(Same Country)		
Precision	No requirement specified however a qualitative review undertaken to ensure no erroneous values.	Passed	Passed		
Completeness	Qualitative assessment of the process to ensure no obvious exclusions.	Passed	Passed		
Technological Relevancy	Ensure that technology assumptions are representative for the product or product group.	Passed	Passed		
Consistency	The study methodology holds for the background data.	Passed	Passed		
Reproducibility	The information available about the methodology and the data values reported should allow an independent practitioner to reproduce the results reported in the study.	Passed	Passed		

Table 8: Summary of data quality requirements for the study.

Criteria	Inventory Collection Requirement (eToolLCD User Inputs)	Compliance				
Citteria	inventory conection requirement (erooicco oser inputs)	Benchmark	Proposed Design			
Temporal Relevancy	All inputs into eToolLCD to be reflective of the project being assessed and if assumptions are made these are to be based on industry practices that are consistent with the project commissioning date.	Passed 0/5 Checks	Passed 0/1 Checks			

Criteria	Inventory Collection Requirement (eToolLCD User Inputs)	Compliance				
Criteria	inventory conection requirement (erooncob oser inputs)	Benchmark	Proposed Design			
Geographical Relevancy	All inputs into eToolLCD must be reflective of the project being assessed and if assumptions are made these are based on the current practices employed in the project country.	Passed 0/5 Checks	Passed 0/2 Checks			
Precision	To avoid aggregated errors a high level of precision is expected inputs into eToolLCD software, being either to 3 significant figures or: • Two significant figures or nearest 10 hours for equipment run time • Two significant figures or nearest 10kg for material quantities • Two significant figures or nearest 100MJ / annum for operational energy • Two significant figures or nearest 100KL / annum for operational water use	Passed 0/4 Checks	Passed 0/1 Checks			
Completeness	Inputs to cover all life cycle phases and elements identified in the system boundary. The link between background data, eToolLCD algorithms and subsequent LCA results is not to introduce significant gaps in the data.	Passed 0/10 Checks	Passed 0/2 Checks			
Technological Relevancy	All inputs into eToolLCD must be reflective of the project being assessed and if assumptions are made these must be drawn from appropriate examples of like technology.	Passed 0/5 Checks	Passed 0/1 Checks			
Consistency	All inputs into eToolLCD must be reflective of the project being assessed and if assumptions are made these are drawn from the same reference library.	Passed 0/10 Checks	Passed 0/0 Checks			
Reproducibility	The information available about the methodology and the data values reported should allow an independent practitioner to reproduce the results reported in the study.	Passed 0/9 Checks	Passed 0/1 Checks			

Table 9: Summary of data quality requirements for the study.

4.4 Completeness

The study aims to follow EN15804 procedures for exclusion of inputs and outputs:

- All inputs and outputs to a (unit) process shall be included in the calculation, for which data are available.
- Data gaps may be filled by conservative assumptions with average or generic data. Any assumptions for such choices shall be documented.
- In case of insufficient input data or data gaps for a unit process, the cut-off criteria shall be 1% renewable and non-renewable primary energy usage and 1% of the total mass input of that unit process.
- The total of neglected input flows per module, e.g. per module shall be a maximum of 5 % of energy usage and mass.
- Conservative assumptions in combination with plausibility considerations and expert judgement can be used to demonstrate compliance with these criteria.
- Particular care should be taken to include material and energy flows known to have the potential to cause significant emissions into air and water or soil related to the environmental indicators.

Two major tests were run to determine the compliance with the above cut-off rules.

4.4.1 Inventory Mass Quantities

The cumulative mass of inventory entries is shown in Figure 5. Given that 205 material elements within the LCA base design make up the last 1% of mass inventory entries a high level of confidence exists that the cut off rules have been upheld.

181 926 0 0 V V V V V V V V V 6 - Cumulative Mass Inventory Inputs - 99% of Mass (Cut off rule requirement)

Figure 5: Cumulative Mass Inventory Entries. In this case 79.46% make up the last 5% of mass inventory entries.

4.4.2 Inventory Energy Analysis

The cumulative embodied energy of inventory entries is shown in Figure 6. Given that 364 elements within the LCA base design make up the last 1% of embodied energy inventory entries a high level of confidence exists that the cut off rules have been upheld.

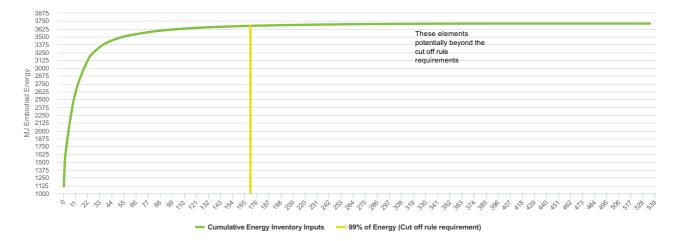


Figure 6 : Cumulative Energy Inventory Entries. In this case 68.04% make up the last 5% of energy inventory entries.

5 Life Cycle Impact Assessment

The Life Cycle Impact Assessment (LCIA) results are provided in Table 10 in the EN15978 reporting format. The red and orange figures within each row highlight the largest and second largest contributing life cycle modules for the indicator. Modules not assessed are abbreviated with "MNA".

The green figures in the comparison section highlight the most improved life cycle modules for the indicator.

5.1 Environmental Impacts

Table 10: Benchmark vs Proposed Design, Environmental Impacts of Each Life Cycle Phase.

Characterised Impacts Per Occupant Per Per Year			^o hases	Use Phases					End of Life Phases			Benefits and Loads Beyond the System Boundary	Total					
		A1-A3	A4	A5	B1	B2	B3	Β4	B5	B6	B6+	B7	C1	C2	C3	C4	D	
Benchm	ark																	
💣 GWP	$kg CO_2 eq$	1.94E + 2	9.23E +1	2.51E +1	0.00E 0	2.51E +1	0.00E 0	3.33E + 2	0.00E 0	1.40E + 3	9.42E + 2	1.02E + 2	1.48E +1	1.93E +1	4.11E -4	8.03E+1	-2.09E +1	3.21E+3
🔅 ODP	kg CFC-11 eq	3.69E -5	1.19E -5	2.25E -6	0.00E 0	6.71E -6	0.00E 0	1.25E -4	0.00E 0	6.26E -6	5.85E -6	1.62E - 6	2.21E -6	2.57E -6	9.36E -11	1.42E -6	-3.70E -7	2.03E-4
AP	kg SO ₂ eq.	1.92E 0	4.35E -1	6.10E -2	0.00E 0	6.47E -2	0.00E 0	1.62E 0	0.00E 0	1.63E O	1.46E 0	2.34E -1	5.25E -2	8.16E -2	1.86E -6	3.42E -2	-2.49E -1	7.34E O
₩ ® EP	kg PO ₄ eq	1.08E 0	1.05E -1	9.82E -3	0.00E 0	1.86E -2	0.00E 0	7.69E -1	0.00E 0	5.15E -1	4.66E -1	1.86E -1	1.26E -2	2.04E -2	6.14E -7	7.66E -3	-2.90E -1	2.90E 0
F POCP	kg ethylene	2.08E -1	4.80E -2	1.32E -2	0.00E 0	1.21E -2	0.00E 0	1.53E -1	0.00E 0	7.26E -2	3.84E -2	1.07E -2	4.45E -3	5.04E -3	8.79E -8	1.21E -2	-1.61E -2	5.62E -1
ADPE	kg antimony	4.75E -3	2.05E -3	9.64E -5	0.00E 0	2.59E -4	0.00E 0	6.38E -3	0.00E 0	2.40E -2	2.22E -2	4.14E -3	3.70E -4	9.00E -4	6.15E -10	4.46E -5	-1.28E -3	6.39E -2
📩 ADPF	MJ	4.33E + 3	1.28E + 3	1.87E + 2	0.00E 0	2.27E + 2	0.00E 0	4.68E +3	0.00E 0	1.72E + 4	1.01E + 4	1.00E + 3	1.93E + 2	2.71E + 2	5.61E -3	1.37E + 2	-3.17E +2	3.94E +4
💣 GWP B	kg CO ₂ eq	-1.37E + 2	-1.91E -1	9.41E 0	0.00E 0	1.57E -2	0.00E 0	-2.05E +1	0.00E 0	1.06E 0	9.81E -1	1.49E +1	2.34E -3	9.03E -4	-2.59E -6	5.76E +1	7.42E 0	-6.62E +1
Propose	d Design																	
🏟 GWP	kg CO ₂ eq	3.56E + 2	6.40E +1	2.79E +1	-6.23E -1	1.52E +1	0.00E 0	3.23E + 2	0.00E 0	2.92E + 2	7.85E + 2	6.39E +1	1.26E +1	2.83E +1	1.61E O	5.90E+1	-5.58E + 2	1.47E + 3
🔅 ODP	kg CFC-11 eq	4.83E -5	8.40E -6	3.19E -6	0.00E 0	6.86E -6	0.00E 0	1.56E -4	0.00E 0	2.24E -6	6.03E -6	1.34E -6	2.00E -6	3.76E -6	3.66E -7	1.93E -6	-2.40E -6	2.38E -4
🚔 AP	kg SO ₂ eq.	2.18E 0	3.09E -1	8.22E -2	0.00E 0	1.48E -2	0.00E 0	1.43E O	0.00E 0	5.18E -1	1.39E O	1.48E -1	4.13E -2	1.20E -1	7.27E -3	4.53E -2	-1.16E O	5.12E 0
₩₩ EP	kg PO ₄ eq	1.35E O	7.47E -2	1.26E -2	0.00E 0	4.08E -3	0.00E 0	8.06E -1	0.00E 0	1.73E -1	4.65E -1	1.27E -1	9.33E -3	3.01E -2	2.40E -3	1.02E -2	-5.82E -1	2.48E 0
F POCP	kg ethylene	1.69E -1	3.07E -2	1.74E -2	0.00E 0	2.75E -3	0.00E 0	1.18E -1	0.00E 0	1.44E -2	3.88E -2	7.43E -3	3.81E -3	7.31E -3	3.44E -4	7.09E -3	-4.30E -2	3.74E -1
adpe	kg antimony	8.45E -3	1.33E -3	1.19E -4	0.00E 0	5.65E -5	0.00E 0	1.15E -2	0.00E 0	1.31E -2	3.51E -2	3.34E -3	1.75E -4	1.24E -3	2.41E -6	6.32E -5	-2.31E -2	5.14E -2
ADPF	MJ	4.57E + 3	8.67E + 2	2.72E +2	0.00E 0	5.05E +1	0.00E 0	3.66E +3	0.00E 0	3.75E + 3	1.01E + 4	7.52E + 2	1.57E + 2	3.93E + 2	2.20E +1	1.87E + 2	-7.16E + 3	1.76E +4
💣 GWP B	$kg CO_2 eq$	-6.42E +1	-7.41E -2	4.78E O	0.00E 0	3.51E -3	0.00E 0	-7.09E 0	0.00E 0	1.01E 0	2.71E O	7.34E -1	2.26E -3	-3.95E -4	-1.01E -2	2.93E +1	1.95E 0	-3.09E +1
Savings	(Benchmark	Compa	red to	Propos	ed Des	ign)										1	1	
💣 GWP	kg CO ₂ eq	-1.62E +2	2.83E +1	-2.76E 0	6.23E -1	9.91E 0	0.00E 0	1.08E +1	0.00E 0	1.11E + 3	1.57E + 2	3.84E +1	2.20E 0	-8.99E 0	-1.61E O	2.13E +1	5.37E + 2	54.23%
🔅 ODP	kg CFC-11 eq	-1.13E -5	3.53E -6	-9.44E -7	0.00E 0	-1.51E -7	0.00E 0	-3.08E -5	0.00E 0	4.02E - 6	-1.76E -7	2.72E -7	2.07E -7	-1.19E -6	-3.66E -7	-5.05E -7	2.03E -6	-17.47%
🚔 AP	kg SO ₂ eq.	-2.54E -1	1.26E -1	-2.12E -2	0.00E 0	4.99E -2	0.00E 0	1.88E -1	0.00E 0	1.11E O	6.17E -2	8.53E -2	1.11E -2	-3.83E -2	-7.27E -3	-1.12E -2	9.16E -1	30.2%
₩₩ EP	kg PO ₄ eq	-2.69E -1	3.03E -2	-2.81E -3	0.00E 0	1.45E -2	0.00E 0	-3.71E -2	0.00E 0	3.42E -1	6.44E -4	5.88E -2	3.24E -3	-9.71E -3	-2.40E -3	-2.49E -3	2.92E -1	14.42%
F POCP	kg ethylene	3.96E -2	1.72E -2	-4.28E -3	0.00E 0	9.38E -3	0.00E 0	3.52E -2	0.00E 0	5.82E -2	-3.56E -4	3.31E -3	6.37E -4	-2.27E -3	-3.44E -4	4.99E -3	2.69E -2	33.48%
adpe	kg antimony	-3.69E -3	7.22E -4	-2.21E -5	0.00E 0	2.02E -4	0.00E 0	-5.07E -3	0.00E 0	1.09E -2	-1.29E -2	8.02E -4	1.94E -4	-3.45E -4	-2.41E -6	-1.86E -5	2.18E -2	19.67%
ADPF	MJ	-2.38E +2	4.09E + 2	-8.56E +1	0.00E 0	1.77E + 2	0.00E 0	1.02E + 3	0.00E 0	1.35E +4	1.79E +1	2.49E + 2	3.61E +1	-1.23E + 2	-2.20E +1	-4.96E +1	6.85E + 3	55.23%
∰ GWP B	$kg CO_2 eq$	-7.27E +1	-1.17E -1	4.63E 0	0.00E 0	1.22E -2	0.00E 0	-1.34E +1	0.00E 0	5.31E -2	-1.73E 0	1.42E +1	8.62E -5	1.30E -3	1.01E -2	2.83E +1	5.47E 0	53.29%

6 Detailed Analysis

This section provides a more detailed results of the life cycle impacts with the aim of identifying the hotspots by analysing temporal, spatial, functional, end-use demand and supply chain dimensions.

For each indicator being assessed the following charts are provided

The Time Series Charts articulate when impacts occur during the life of the design. This exposes insights such as the temporal hotspots signified by jumps in the plot during the life of the project (for example, relating to a large replacement item) and the payback period of design options

The Top Five Life Cycle Charts express impacts by different modules, categories and classes enabling a detailed understanding of what is responsible for the greatest impacts and also compares these impacts between designs. The pie chart within each bar chart shows the proportion of the life cycle impacts represented in the bar chart. A brief description of the categories is provided below:

- LC Module Impacts: The EN15978 Life Cycle Modules. Generally 100% building impacts will be included in the bar chart.
- Construction Category: The breakdown of the impacts by construction category. The bar chart will generally only part of the total building impacts.
- Operational Demand: The building end use demands that are driving environmental impacts.
- Energy Supply: The supply of fuels to the building, in effect the upstream fuel sources supplying energy for on site use during construction, operational and demolition.
- Materials: The materials (grouped into common categories) that are driving the environmental impacts.
- Equipment and People: The equipment and people required during construction, maintenance and demolition and all associated transport trips that are driving the environmental impacts

All impact figures are quoted per Occupant for the study.

6.1 Global Warming Potential Total, GWP (kg CO₂ eq)

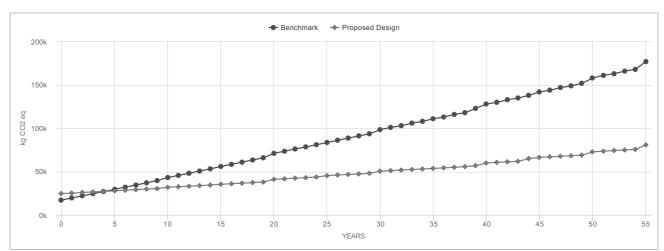
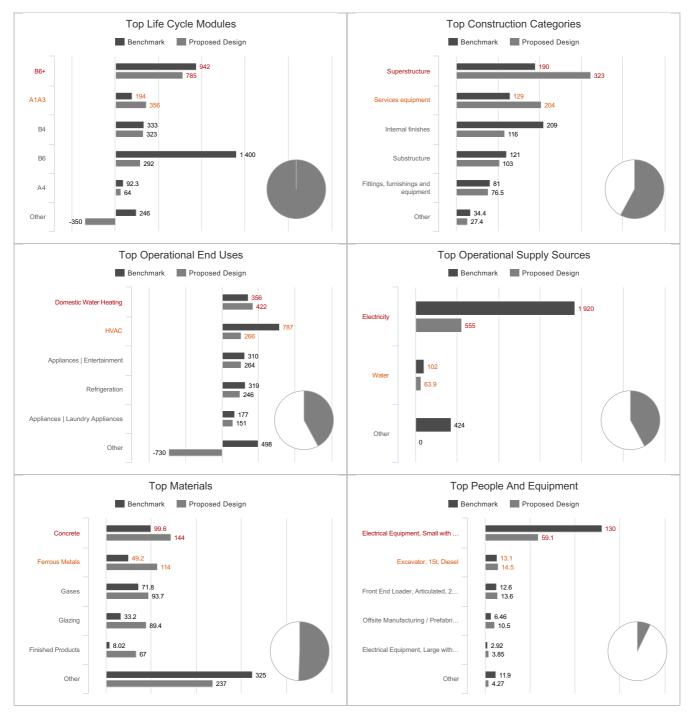



Figure 7: Time series Global Warming Potential Total, GWP chart

Figure 8: Top Five Global Warming Potential Total, GWP chart

Highest and Lowest Impact Materials (kg CO_2 eq)

	Initial Materials & Construction (A1-A5)	Use Stage Materials & Construction (B1-B5)	End of Life (C1-C4) R	ecycling & Energy Export (D)	Biogenic	Total
Top 10 Impact Materials						
Glazing Windows Aluminium	Framed No Thermal Bre	ak Single Glaze Domestic	c 50% Opening			
	35750.7	35920.42	169.71	0	83.84	71924.67
Gases Refrigerants R-410A (R	Puron, AZ-20)					
	789.58	44380.98	16614.72	0	0.89	61786.17
Concrete Unreinforced Portla	ind Cement Blends 40 N	ИРа				
	51878.63	0	8159.3	0	13.56	60051.49
Ferrous Metals Steel Reinforc	ement bar Unspecified					
	5840 <mark>3.02</mark>	0	2667.3	-2929.14	-227.37	57913.81
Finished Products Electrical G	ioods Solar PV Panels N	Monocystalline				
	17658.24	33945.71	1367.58	-10149.16	164.43	42986.81
Bricks, Blocks and Pavers Clay	Bricks and Pavers Unsp	pecified				
	36840.59	0	4814.07	0	-2342.94	39311.72
Concrete Unreinforced Portla	nd Cement Blends 20 M	1Pa				
	24182.95	-514.32	4839.93	0	7.22	28515.78
Concrete Reinforced 1.0% Rei	inforcement Portland Ce	ement Blends 30 MPa				
	23932.56	0	3517.68	0	-0.07	27450.17
Cementitious Binders Mortars	and Renders 1 cement :	4 sand				
	18483.27	3435.09	1125.9	0	89.48	23133.73
Metals (Non-Ferous) Aluminiu	m Unspecified					
	12973.22	16492.7	184.21	-8297.29	26.67	21379.51
Bottom 5 Impact Materials	3					
Plant Based Products (non Timl	ber) Paper General					
	45.75	183.01	0	0	-247.25	-18.48
Timber Sustainably Sourced	General Unspecified					
	290.59	267.43	23.51	-107.89	-929.28	-455.64
Timber Sustainably Sourced	Softwood Unspecified					
	495.98	456.45	40.13	-184.14	-1586.11	-777.69
Timber Sustainably Sourced	Particle Board Indoor					
	2572.89	2407.87	167.54	-768.7	-5557.45	-1177.85
Timber Sustainably Sourced	Hardwood Unspecified					
	7876.81	0	581.87	-1330.88	-10442.82	-3315.02

Highest and Lowest Impact Templates (kg CO₂ eq)

	ial Materials & astruction (A1- A5) Cc	Use Stage Int Materials & onstruction (B1- B5)	tegrated Energy F Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1- C4) Er	Recycling & hergy Export (D)	Biogenic	Total
Top 10 Impact Temp	plates								
Appliances, Residential	Average Op&Em							_	
	543.89	2927.39	0	443385.95	0	9.66	-503.02	1538.41	44 <mark>7</mark> 902.28
Electric Instantaneous	Hot Water Syster	m (HWS_App)						_	
	1125.91	4210.74	346906.84	0	0	27.98	-597.42	1223.41	<mark>3</mark> 52897.46
Refrigeration, Residenti	al Well Ventilated	Fridge Recess		_				_	_
	3442.58	29129.66	0	202243.65	0	2408.59	-2824.01	766.24	235166.71
Ducted System Air Sou	rce Heat Pump fo	r Heating, Average	Efficiency (COP/E	ER 3.27), R410a Re	efrigerant			_	
	2230.27	28188.23	117857.83	0	0	8326.79	-380.7	413.09	156635.52
Ducted System Air Sou	rce Heat Pump fo	r Cooling, higher ef	ficiency (COP/EE	R 3.8), R410a Refrig	gerant			_	
	2230.27	28188.23	100790.99	0	0	8326.79	-380.7	354.03	139509.61
Cooking, Res Electric O	ven Induction Sto	ve						_	
	1697.54	6701.81	118975.17	0	0	19.83	144.62	187.62	127726.58
Upper Floors - Concret	te Slab, 172mm, 40	OMPa, 3.8% reo (m.	2)						
	89490.18	0	0	0	0	8863.23	-8046.35	-2230.88	88076.17
Windows, Residential A	luminium Single G	àlaze, fly screen							
	38329.19	40747.22	0	0	0	186.69	-1227.06	85.86	78121.9
Wall, External, Masonry,	double brick 90-	50-90 insulated w	vith foundations a	nd finishes					
	61210.33	5577.3	0	0	0	6522.66	-95.03	-2225.97	70989.3
Lowest Floor - Concret	te Slab, 100mm, 2	OMPa, 3.8% reo (m	2)						
	45120.25	-514.32	0	0	0	5996.42	4098.53	-1552.1	53148.78
Bottom 5 Impact Te	mplates								
Kitchen Medium sized (incl Equipment)								
	5505.11	6081.4	0	0	0	239.96	-1118.71	-5611.9	5095.86
LED Outdoor Lighting (I	Residential - Ultra	High Efficiency 150	Dlm/watt), m2						
	156.85	761.02	4093.88	0	0	0.69	-15.44	16	5013.01
Door - HollowCoreTim	ber/SteelJam/Pai	nted							
	2324.63	2943.14	0	0	0	61.78	-824.89	-658.76	3845.91
Door – SolidCoreTimbe	er/SteelJam/Paint	ed (#)							
	713.84	656.23	0	0	0	18.71	-127.54	-281.97	979.27
Solar PV System Reside	ential – Zone 3 (Pe	erth Sydney etc)						_	
	29484.25	50514.68	<mark>-486</mark> 363.75	0	0	1531.55	<mark>-44</mark> 5220.28	-2898.86	-852952.4

6.2 Ozone Depletion Potential, ODP (kg CFC-11 eq)

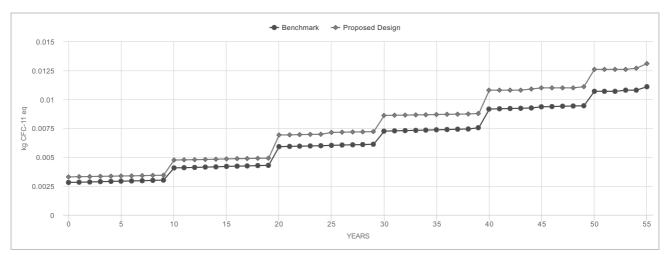
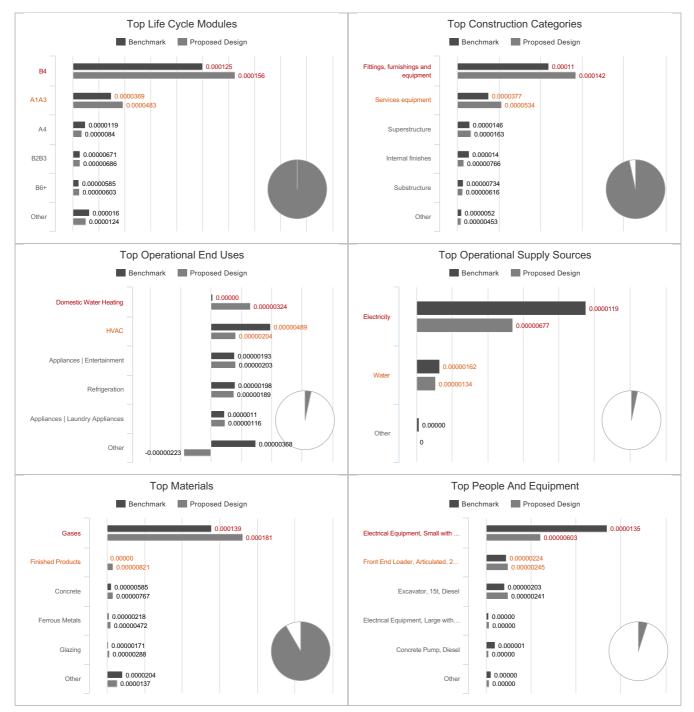



Figure 9: Time series Ozone Depletion Potential, ODP chart

Figure 10: Top Five Ozone Depletion Potential, ODP chart

Highest and Lowest Impact Materials (kg CFC-11 eq)

Initial Materials & Construction (A1-A5)	Use Stage Materials & Construction (B1-B5)	End of Life (C1-C4) Recycling & Energy Export ([)) Total
Top 10 Impact Materials			
Gases Refrigerants R-134a (HFC-134a)			
0.02	0.1	0	0 0.11
Gases Refrigerants R-410A (Puron, AZ-20)			
0.01	0.02	0	0 0.03
Finished Products Electrical Goods Solar PV Panels Monocys	talline		
0	0	0	0 0.01
Concrete Unreinforced Portland Cement Blends 40 MPa			
0	0	0	0 0
Ferrous Metals Steel Reinforcement bar Unspecified			
0	0	0	0 0
Glazing Windows Aluminium Framed No Thermal Break Sing	e Glaze Domestic 50% Opening		
0	0	0	0 0
Bricks, Blocks and Pavers Clay Bricks and Pavers Unspecified			
0	0	0	0 0
Concrete Unreinforced Portland Cement Blends 20 MPa			
0	0	0	0 0
Concrete Reinforced 1.0% Reinforcement Portland Cement Bl	ends I 30 MPa		
0	0	0	0 0
Cementitious Binders Mortars and Renders 1 cement : 4 sand			
	0	0	0 0
Bottom 5 Impact Materials			<u> </u>
Plastics Nylon Unspecified			
0	0	0	0 0
Metals (Non-Ferous) Zinc	0	0	0 0
0	0	0	0 0
	0	0	0 0
Ferrous Metals Steel Galvanised Structural Unspecified	0		0
0	0	0	0 0
Ferrous Metals Steel Coated Sheet Enamelled	<u>_</u>		
0	0	0	0 0
Generic Cost Adjustment Factors Cost Only Factors (No Envi			
0	0	0	0 0

Highest and Lowest Impact Templates (kg CFC-11 eq)

		Jse Stage Materials & Construction (B1- B5)	Integrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1–C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templa	ates							
Refrigeration, Residential	Well Ventilated Fr	idge Recess						
	0.02	0.1	0	0	0	0	0	0.12
Ducted System Air Sourc	e Heat Pump for H	leating, Average Effic	iency (COP/EER 3.27), R410a Refrigerant				
	0	0.01	0	0	0	0	0	0.02
Ducted System Air Sourc	e Heat Pump for C	Cooling, higher efficie	ncy (COP/EER 3.8), R	410a Refrigerant				
	0	0.01	0	0	0	0	0	0.02
Wall, External, Masonry, d	ouble brick 90-50)-90 insulated with f	oundations and finish	nes				
	0	0	0	0	0	0	0	0
Upper Floors - Concrete	Slab, 172mm, 40M	IPa, 3.8% reo (m2)						
	0	0	0	0	0	0	0	0
Wall, Internal, Masonry, Si	ngle Brick Wall (90	0mm) uninsulated wit	h foundations and fi	nishes				
	0	0	0	0	0	0	0	0
Appliances, Residential A	verage Op&Em							
	0	0	0	0	0	0	0	0
Roof – TimberTruss/Steel	ISheeting/25°Pitch	1						
	0	0	0	0	0	0	0	0
Electric Instantaneous Ho	ot Water System (HWS_App)						
	0	0	0	0	0	0	0	0
Lowest Floor - Concrete	Slab, 100mm, 20N	1Pa, 3.8% reo (m2)						
	0	0	0	0	0	0	0	0
Bottom 5 Impact Tem	plates							
LED Residential Lighting (High Efficiency – 1	IOIm/watt)						
	0	0	0	0	0	0	0	0
Staircase, Concrete, 40M	pa, 2% reo							
	0	0	0	0	0	0	0	0
Door - HollowCoreTimbe	er/SteelJam/Painte	ed						
	0	0	0	0	0	0	0	0
Door - SolidCoreTimber/	SteelJam/Painted	(#)						
	0	0	0	0	0	0	0	0
LED Outdoor Lighting (Re	sidential - Ultra Hi	gh Efficiency 150lm/v	watt), m2					
	0	0	0	0	0	0	0	0

6.3 Acidification Potential for Soil and Water, AP (kg SO_2 eq.)

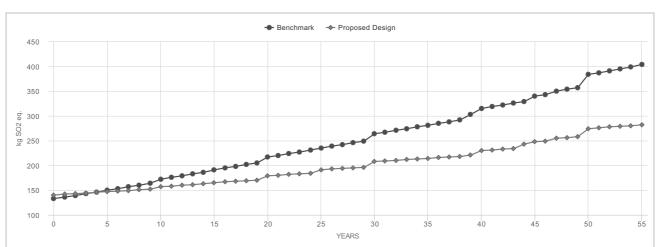
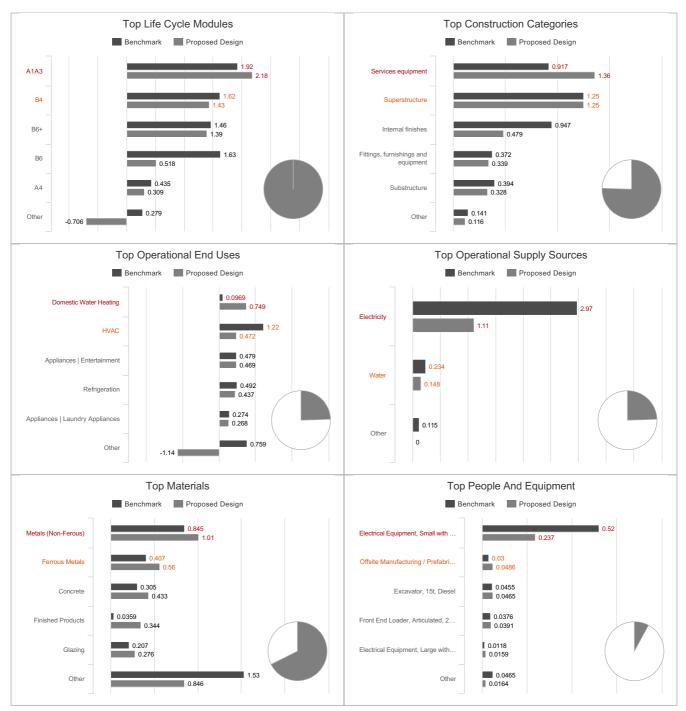



Figure 11: Time series Acidification Potential for Soil and Water, AP chart

Figure 12: Top Five Acidification Potential for Soil and Water, AP chart

Highest and Lowest Impact Materials (kg SO_2 eq.)

Initial Materials & Construction (A1-A5)				
Top 10 Impact Materials				
Metals (Non-Ferous) Copper Unspecified				
672.33	323.25	2.88	-227.89	770.57
Finished Products Electrical Goods Solar PV Panels Monocy	stalline			
85.3	157.28	6.13	-27.35	221.35
Glazing Windows Aluminium Framed No Thermal Break Sing	le Glaze Domestic 50% Opening	3		_
106.2	106.98	0.78	0	213.96
Ferrous Metals Steel Coated Sheet Zinc Coated & Coloured S	Sheet 0.43mm			_
202.02	9.33	O.91	-10.53	201.73
Ferrous Metals Steel Reinforcement bar Unspecified				_
179.69	0	11.71	-12.42	178.98
Concrete Unreinforced Portland Cement Blends 40 MPa				_
140.05	0	37.69	0	177.74
Bricks, Blocks and Pavers Clay Bricks and Pavers Unspecified				_
71.61	0	22.14	0	93.74
Ceramics Tiles Ceramic Tiles				_
37.89	49.04	1.01	0	87.94
Concrete Unreinforced Portland Cement Blends 20 MPa				_
65.48	0	22.36	0	87.84
Concrete Reinforced 1.0% Reinforcement Portland Cement B	lends 30 MPa			-
67.8	0	16.25	0	84.05
Bottom 5 Impact Materials				
Ferrous Metals Steel Galvanised Structural Unspecified				
0.13	0	0	-0.02	0.12
Insulation Rigid Foams and Boards Polyethylene Polyethylene	9			
0.03	0.05	0	0	0.08
Asphalt and Bitumen Asphalt hot mix 5.50% primary bitumen	, (0% RAP)			
0	0.04	0	0	0.04
Ferrous Metals Steel Coated Sheet Enamelled				
0.01	0.01	0	-0.01	0.02
Generic Cost Adjustment Factors Cost Only Factors (No Envi	ronmental Impacts Adjustment)			
0	0	0	0	0

Highest and Lowest Impact Templates (kg SO_2 eq.)

Initial Materials & U Construction (A1- & A5)	Jse Stage Materials Construction (B1- B5)	Integrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1-C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templates							
Appliances, Residential Average Op&Em							
2.88	15.56	0	789.62	0	0.05	-3.32	804.79
Electric Instantaneous Hot Water System (HWS_App)						
55.87	109.37	617.8	0	0	0.26	-35.38	747.91
Refrigeration, Residential Well Ventilated Fri	idge Recess						
22.31	113.28	0	360.17	0	0.44	-24.93	471.27
Roof - TimberTruss/SteelSheeting/25°Pitch							
302.89	70.26	0	0	0	5.56	-1.37	377.34
Electrical Fittings - sockets power points w	iring embodied only	(m2)					
322.98	26.36	0	0	0	1.47	-71.41	279.41
Ducted System Air Source Heat Pump for H	eating, Average Effic	iency (COP/EER 3.27), R410a Refrigerant				
23.16	54.05	209.89	0	0	0.13	-11.06	276.17
Upper Floors - Concrete Slab, 172mm, 40M	Pa, 3.8% reo (m2)						
265.57	0	0	0	0	40.61	-30.68	275.5
Cooking, Res Electric Oven Induction Stove							
8.68	34.3	211.88	0	0	0.09	-1.19	253.77
Ducted System Air Source Heat Pump for C	ooling, higher efficie	ncy (COP/EER 3.8), R	410a Refrigerant				
23.16	54.05	179.5	0	0	0.13	-11.06	245.78
Windows, Residential Aluminium Single Glaz	e, fly screen						
113.59	120.68	0	0	0	0.97	-2.71	232.54
Bottom 5 Impact Templates							
Demolition - Residential (End-of-Life)							
0	0	0	0	0	34.1	0	34.1
Door - HollowCoreTimber/SteelJam/Painte	d						
8.99	12.33	0	0	0	0.28	-2.37	19.23
LED Outdoor Lighting (Residential - Ultra Hi	gh Efficiency 150lm/v	watt), m2					
0.9	3.98	7.29	0	0	0	-0.07	12.1
Door - SolidCoreTimber/SteelJam/Painted	(#)						
2.84	3.11	0	0	0	0.08	-0.17	5.86
Solar PV System Residential - Zone 3 (Perth	n Sydney etc)						
119.38	215.97	-8 <mark>66.15</mark>	0	0	8.11	-706.42	-1229.11

Life Cycle Assessment Report Oxford Townhouses 293 and 295 Oxford Street Leederville Tuesday, March 5, 2024 UTC

6.4 Eutrophication potential, EP (kg PO₄ eq)

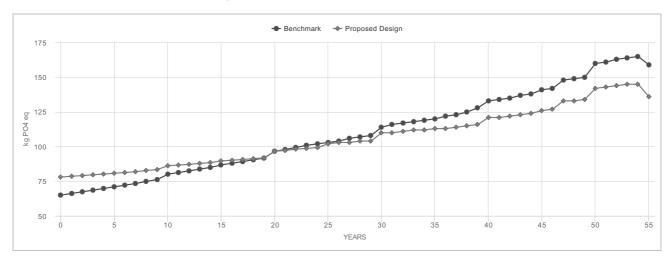
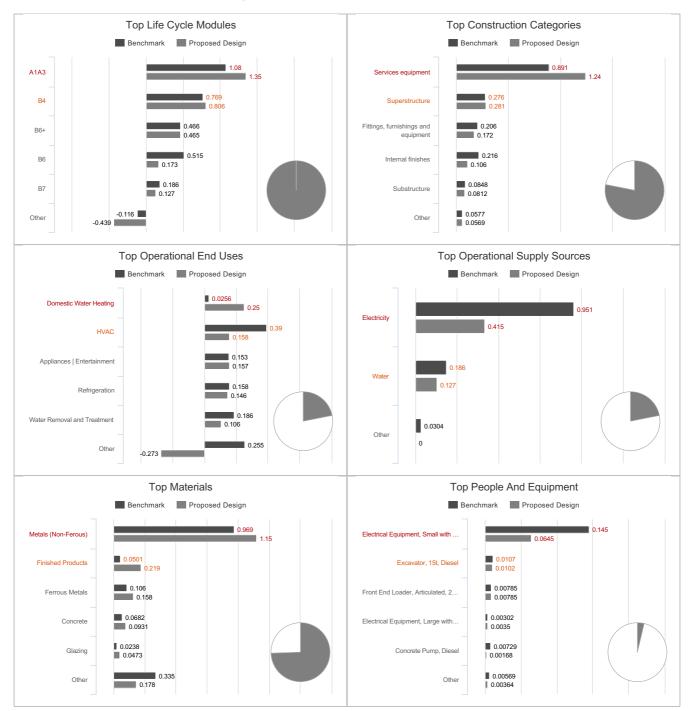



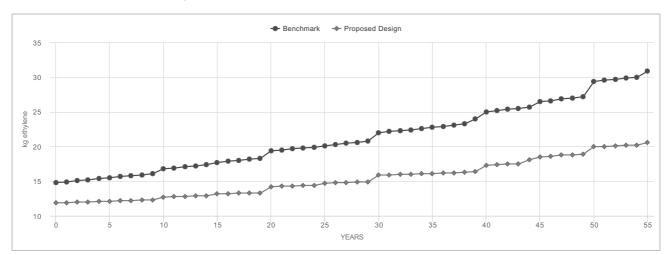
Figure 13: Time series Eutrophication potential, EP chart

Figure 14: Top Five Eutrophication potential, EP chart

Highest and Lowest Impact Materials (kg PO₄ eq)

Initial M	Initial Materials & Construction Use Stage Materials & End of Life (C1-C4) Recycling & Energy Export (D) (A1-A5) Construction (B1-B5)				Total
Top 10 Impact Materials					
Metals (Non-Ferous) Copper Unspec	ified				
	823.51	394.41	0.35	-281.53	936.74
Finished Products Electrical Goods S	Solar PV Panels Monocysta	lline			
	37.48	69.5	2.01	-5.66	103.34
Ferrous Metals Steel Reinforcement	bar Unspecified				
	57.2	0	3.04	-3.29	56.95
Ferrous Metals Steel Coated Sheet	Zinc Coated & Coloured She	et 0.43mm			
	51.78	2.39	0.24	-2.76	51.65
Finished Products Electrical Goods E	Electronics Electronics For	Control Unit			
	6.07	42.49	0	0	48.56
Concrete Unreinforced Portland Cen	nent Blends 40 MPa				
	28.3	0	9.33	0	37.62
Glazing Windows Aluminium Framed	No Thermal Break Single	Glaze Domestic 50% Opening			
	18.61	18.8	O.19	0	37.6
Finished Products Electrical Goods S	Solar Inverters Solar Inverte	er Generic			
	4.86	23.41	0	0	28.27
Bricks, Blocks and Pavers Clay Bricks	and Pavers Unspecified				
	14.03	0	5.49	0	19.5
Concrete Reinforced 1.0% Reinforcer	ment Portland Cement Blen	ds 30 MPa			
	14.81	0	4.02	0	18.83
Bottom 5 Impact Materials					
Ferrous Metals Steel Galvanised Stru	uctural Unspecified				
	0.03	0	0	0	0.03
Insulation Rigid Foams and Boards Po	olyethylene Polyethylene				
	0.01	0.01	0	0	0.02
Asphalt and Bitumen Asphalt hot mix	5.50% primary bitumen, (C	0% RAP)			
	0	0.01	0	0	0.01
Ferrous Metals Steel Coated Sheet	Enamelled				
	0	0	0	0	0.01
Generic Cost Adjustment Factors Co	ost Only Factors (No Enviror	nmental Impacts Adjustment)			
	0	0	0	0	0

Highest and Lowest Impact Templates (kg PO₄ eq)


Initial Materials & l Construction (A1- & A5)	Jse Stage Materials & Construction (B1- B5)	Integrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1–C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templates							
Electric Instantaneous Hot Water System (HWS_App)						
66.26	122.59	206.33	0	0	0.04	-42.66	352.55
Electrical Fittings - sockets power points w	viring embodied only	(m2)					
383.28	6.67	0	0	0	0.2	-87.99	302.16
Appliances, Residential Average Op&Em							
1.86	9.88	0	263.71	0	0.01	-2.48	272.99
Utilities Connection to Site Residential							
135.8	129.37	0	0	0	0.06	-58.73	206.5
Refrigeration, Residential Well Ventilated Fr	idge Recess						
16.57	83.09	0	120.29	0	0.08	-22.13	197.9
Ducted System Air Source Heat Pump for H	leating, Average Effic	iency (COP/EER 3.27), R410a Refrigerant				
21.27	47.9	70.1	0	0	0.02	-12.67	126.62
Ducted System Air Source Heat Pump for C	Cooling, higher efficie	ncy (COP/EER 3.8), R	410a Refrigerant				
21.27	47.9	59.95	0	0	0.02	-12.67	116.47
Standard 1st Bathroom - WC/Shower-bath	/Basin/WallTiles						
128.49	7.82	0	0	0	0.22	-28	108.53
Water Use and Treatment (eTool Turbo)							
0	0	0	0	104.94	0	0	104.94
Roof - TimberTruss/SteelSheeting/25°Pitch	1						
75.95	15.44	0	0	0	1.39	-0.46	92.32
Bottom 5 Impact Templates							
Demolition - Residential (End-of-Life)							
0	0	0	0	0	7.7	0	7.7
LED Outdoor Lighting (Residential - Ultra Hi	gh Efficiency 150lm/v	watt), m2					
0.6	3.62	2.43	0	0	0	-0.02	6.64
Door - HollowCoreTimber/SteelJam/Painte							
2.53	3.38	0	0	0	0.07	-0.59	5.39
Door - SolidCoreTimber/SteelJam/Painted	(#)						1
0.79	0.83	0	0	0	0.02	-0.04	1.6
Solar PV System Residential - Zone 3 (Pert							
49.98	99.97	-289.27	0	0	2.25	-193.23	-330.3

6.5 Photochemical Ozone Creation Potential, POCP (kg ethylene)

Figure 15: Time series Photochemical Ozone Creation Potential, POCP chart

Figure 16: Top Five Photochemical Ozone Creation Potential, POCP chart

Highest and Lowest Impact Materials (kg ethylene)

Initial Materials & Construction (A1-A5)	Use Stage Materials & Construction (B1-B5)	End of Life (C1-C4) Re	ecycling & Energy Export (D)	Total
Top 10 Impact Materials				
Timber Sustainably Sourced Hardwood Unspecified				
48.06	0	2.52	0.21	50.78
Metals (Non-Ferous) Copper Unspecified				
25.3	12.16	O.11	-8.58	28.99
Ferrous Metals Steel Reinforcement bar Unspecified				
20.88	0	0.62	-2.09	19.41
Glazing Windows Aluminium Framed No Thermal Break Sing	le Glaze Domestic 50% Opening			
7.41	7.45	0.04	0	14.91
Finished Products Electrical Goods Solar PV Panels Monocys	stalline			_
3.93	6.51	0.29	-2.47	8.26
Concrete Unreinforced Portland Cement Blends 40 MPa				
4.88	0	2.05	0	6.93
Bricks, Blocks and Pavers Clay Bricks and Pavers Unspecified				_
5.48	0	1.21	0	6.69
Timber Sustainably Sourced Plywood Unspecified				_
3.24	0	1.2	0.1	4.53
Metals (Non-Ferous) Aluminium Unspecified				-
2.62	3.37	0.08	-1.63	4.44
Concrete Reinforced 1.0% Reinforcement Portland Cement Bl	ends 30 MPa			-
3.27	0	0.88	0	4.16
Bottom 5 Impact Materials				
Fibre Reinforced Plastics and Resins Fibreglass Unspecified				
0	0	0	0	0.01
Ferrous Metals Steel Galvanised Structural Unspecified				
0.01	0	0	0	0
Asphalt and Bitumen Asphalt hot mix 5.50% primary bitumen,	(0% RAP)			
0	0	0	0	0
Ferrous Metals Steel Coated Sheet Enamelled				
0	0	0	0	0
Generic Cost Adjustment Factors Cost Only Factors (No Envi			0	0
0	0	0	0	0
	0	0	0	

Highest and Lowest Impact Templates (kg ethylene)

	l Materials & Use S truction (A1- & Co A5)		ntegrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1-C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templates	3							
Roof - TimberTruss/SteelShe	eting/25°Pitch							
	57.65	5.9	0	0	0	2.83	-1.39	65
Electric Instantaneous Hot W	ater System (HWS	S_App)						
	2.41	5.65	17.2	0	0	0.01	-1.47	23.8
Appliances, Residential Avera	age Op&Em							
	0.29	1.58	0	21.98	0	0	-0.31	23.55
Refrigeration, Residential Wel	I Ventilated Fridge	Recess						
	2.13	10.67	0	10.03	0	0.02	-1.93	20.92
Upper Floors - Concrete Slab	o, 172mm, 40MPa, 3	3.8% reo (m2)						
	23.28	0	0	0	0	2.82	-5.44	20.65
Windows, Residential Alumini	um Single Glaze, fly	/ screen						
	8.4	9.14	0	0	0	0.05	-0.24	17.35
Wall, External, Masonry, doubl	le brick 90-50-90	insulated with fou	ndations and finish	ies				
	12.72	2.81	0	0	0	1.72	0.01	17.25
Electrical Fittings - sockets p	ower points wiring	embodied only (n	n2)					
	13.91	5.13	0	0	0	0.06	-2.72	16.38
Ducted System Air Source He	eat Pump for Heati	ng, Average Efficie	ncy (COP/EER 3.27), R410a Refrigerant				
	2.73	6.67	5.84	0	0	0.01	-0.53	14.72
Wall, Internal, Masonry, Single	Brick Wall (90mm) uninsulated with	foundations and fi	nishes				
	10.75	2.95	0	0	0	1.01	0.01	14.71
Bottom 5 Impact Templa	tes							
Door - HollowCoreTimber/St	eelJam/Painted							
	1.29	1.77	0	0	0	0.08	-0.45	2.69
Floor Covering - Tiles (ceram	nic/10mm)							
	1.15	1.27	0	0	0	0.03	0	2.45
Door - SolidCoreTimber/Stee	elJam/Painted (#)							
	0.43	0.55	0	0	0	0.03	-0.05	0.95
LED Outdoor Lighting (Reside	ential – Ultra High E	fficiency 150lm/wa	itt), m2					
	0.07	0.29	0.2	0	0	0	-0.01	0.55
Solar PV System Residential -	- Zone 3 (Perth Syd	dney etc)						
	6.8	12.58	-24.11	0	0	0.36	-20.16	-24.53

6.6 Abiotic Depletion Potential - Elements, ADPE (kg antimony)

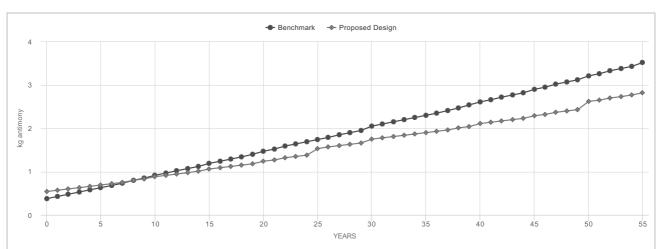
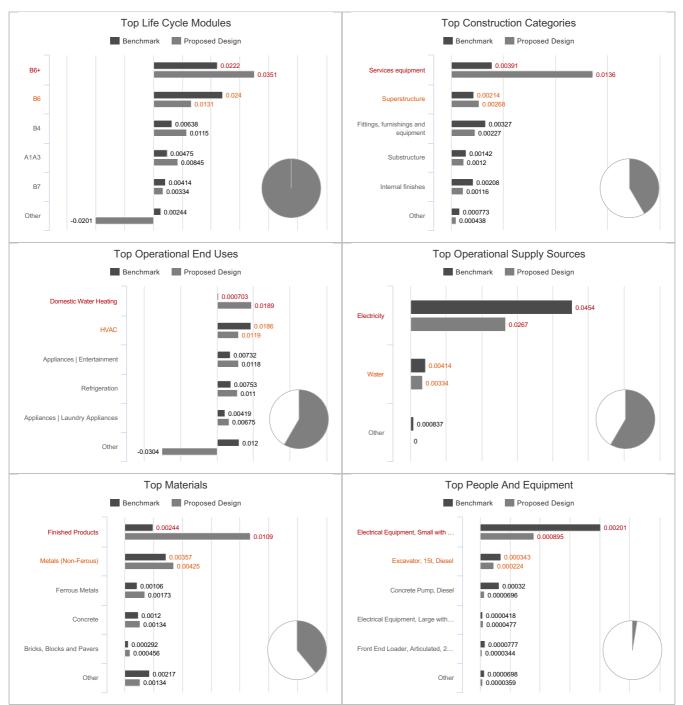



Figure 17: Time series Abiotic Depletion Potential - Elements, ADPE chart

Highest and Lowest Impact Materials (kg antimony)

	Initial Materials & Construction (A1-A5)	Use Stage Materials & Construction (B1-B5)	End of Life (C1-C4)	ecycling & Energy Export (D)	Total
Top 10 Impact Materials					
Finished Products Electrica	I Goods Solar PV Panels Monocyst	alline			
	1.82	3.65	0	0	5.47
Metals (Non-Ferous) Copp	er Unspecified				
	3.04	1.46	0	-1.04	3.47
Finished Products Electrica	I Goods Electronics Electronics For	Control Unit			
	0.29	2.05	0	0	2.35
Finished Products Electrica	I Goods Solar Inverters Solar Invert	er Generic			
	0.2	0.98	0	0	1.19
Ferrous Metals Steel Reinfo	orcement bar Unspecified				_
	0.65	0	0.06	-0.06	0.64
Concrete Unreinforced Po	rtland Cement Blends 40 MPa				_
	0.15	0	0.33	0	0.48
Ferrous Metals Steel Coate	ed Sheet Zinc Coated & Coloured Sh	eet 0.43mm			_
	0.46	0.02	0	-0.05	0.43
Bricks, Blocks and Pavers C	lay Bricks and Pavers Unspecified		_		_
	0.18	0	0.19	0	0.38
Concrete Reinforced 1.0%	Reinforcement Portland Cement Ble	nds 30 MPa			_
	0.19	0	0.14	0	0.33
Ceramics Tiles Ceramic Til	es				_
	0.12	0.16	0.01	0	0.29
Bottom 5 Impact Materi	als				
Asphalt and Bitumen Aspha	alt hot mix 5.50% primary bitumen, (O% RAP)			
	0	0	0	0	0
Fibre Reinforced Plastics and	d Resins Fibreglass Unspecified				
	0	0	0	0	0
Insulation Rigid Foams and	Boards Polyethylene Polyethylene				
	0	0	0	0	0
Ferrous Metals Steel Coate	ed Sheet Enamelled				
	0	0	0	0	0
Generic Cost Adjustment F	actors Cost Only Factors (No Enviro	onmental Impacts Adjustment)		
	0	0	0	0	0

Highest and Lowest Impact Templates (kg antimony)

	itial Materials & Use onstruction (A1- & C A5)		Integrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1–C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templat	tes							
Appliances, Residential Av	erage Op&Em							
	0.01	0.05	0	19.9	0	0	-0.01	19.95
Electric Instantaneous Hot	t Water System (HV	WS_App)						
	0.26	0.55	15.57	0	0	0	-0.16	16.22
Refrigeration, Residential V	Vell Ventilated Fridg	ge Recess						
	0.07	0.34	0	9.08	0	0	-0.11	9.38
Ducted System Air Source	Heat Pump for Hea	ating, Average Effici	iency (COP/EER 3.27), R410a Refrigerant				
	0.15	0.65	5.29	0	0	0	-0.05	6.04
Cooking, Res Electric Oven	Induction Stove							
	0.04	0.17	5.34	0	0	0	-0.02	5.54
Ducted System Air Source	Heat Pump for Coc	oling, higher efficier	ncy (COP/EER 3.8), R	410a Refrigerant				
	0.15	0.65	4.52	0	0	0	-0.05	5.27
Water Use and Treatment	(eTool Turbo)							
	0	0	0	0	2.75	0	0	2.75
LED Residential Lighting (H	ligh Efficiency - 1101	m/watt)			_			-
	0.13	0.86	1.69	0	0	0	0	2.67
Electrical Fittings - socket	s power points wiri	ng embodied only	(m2)					-
	1.43	0.08	0	0	0	0	-0.33	1.19
Utilities Connection to Site	e Residential							
	0.54	0.54	0	0	0	0	-0.22	0.86
Bottom 5 Impact Temp	plates							
Windows, Residential Alum		fly screen						
	0.05	0.07	0	0	0	0.01	0	0.12
Floor Covering - Tiles (cer								
0	0.05	0.06	0	0	0	0	0	0.1
Door - HollowCoreTimber,								
	0.03	0.04	0	0	0	0	-0.01	0.05
Door - SolidCoreTimber/S								
	0.01	0.01	0	0	0	0	0	0.02
Solar PV System Residenti	ial – Zone 3 (Perth S							
	2.04	4.64	-21.83	0	0	0	-17.77	-32.92

6.7 Abiotic Depletion Potential - Fossil Fuels, ADPF (MJ)

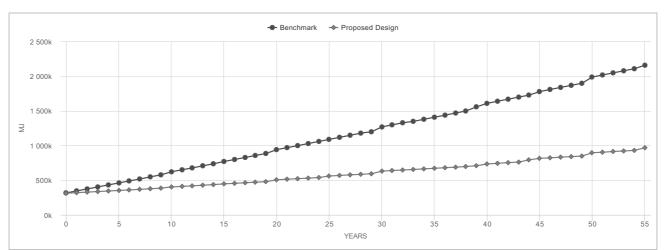
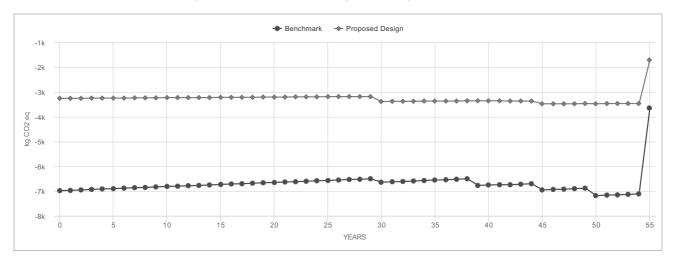


Figure 19: Time series Abiotic Depletion Potential - Fossil Fuels, ADPF chart

Highest and Lowest Impact Materials (MJ)

Total	Initial Materials & Construction Use Stage Materials & End of Life (C1-C4) Recycling & Energy Export (D) (A1-A5) Construction (B1-B5)			
				Top 10 Impact Materials
			e Glaze Domestic 50% Opening	Glazing Windows Aluminium Framed No Thermal Break Sing
764870.81	0	2894.84	382435.41	379540.57
	_			Ferrous Metals Steel Reinforcement bar Unspecified
708421.87	-32386.66	35232.9	0	705575.64
			talline	Finished Products Electrical Goods Solar PV Panels Monocys
5 <mark>6</mark> 1817.01	-104018.73	18569.93	432856.05	214409.76
				Concrete Unreinforced Portland Cement Blends 40 MPa
<mark>53</mark> 1922.08	0	140056.44	0	391865.64
				Bricks, Blocks and Pavers Clay Bricks and Pavers Unspecified
452076.85	0	82113.94	0	369962.91
				Concrete Unreinforced Portland Cement Blends 20 MPa
269452.4	0	83078.58	0	186373.82
			ends 30 MPa	Concrete Reinforced 1.0% Reinforcement Portland Cement Bl
266768.26	0	60381.88	0	206386.38
				Ceramics Tiles Ceramic Tiles
240410.3	0	3753.05	134075.38	102581.87
				Metals (Non-Ferous) Aluminium Unspecified
221546.25	-86033.56	1993.42	171101.83	134484.57
				Cementitious Binders Mortars and Renders 1 cement : 4 sand
220875.93	0	19326.35	32924.83	168624.75
				Bottom 5 Impact Materials
				Metals (Non-Ferous) Brass
329.87	-82.82	3.21	343.9	65.58
			(0% RAP)	Asphalt and Bitumen Asphalt hot mix 5.50% primary bitumen,
321.12	0	6.09	275.25	39.79
				Ferrous Metals Steel Galvanised Structural Unspecified
116.02	-44.62	4.69	0	155.95
				Ferrous Metals Steel Coated Sheet Enamelled
102.93	-13.75	0.73	58.34	57.61
			onmental Impacts Adjustment)	Generic Cost Adjustment Factors Cost Only Factors (No Envi
0	0	0	0	0


Highest and Lowest Impact Templates (MJ)

	Initial Materials & Us Construction (A1- & A5)		Integrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1-C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Temp	lates							
Appliances, Residential	Average Op&Em							
	9063.67	48800.93	0	5722437.36	0	129.61	-5761.55	5774670.01
Electric Instantaneous	Hot Water System (H	IWS_App)						
	15498.69	60958.06	4477256.58	0	0	341.28	-7048.3	<mark>4</mark> 547006.32
Refrigeration, Residenti	al Well Ventilated Fric	lge Recess						
	52047.09	262945.5	0	2610201.34	0	886.69	-32547.08	2893533.54
Cooking, Res Electric O	ven Induction Stove							_
	21627.01	85719.04	1535519.91	0	0	275.19	822.23	1643963.37
Ducted System Air Sou	rce Heat Pump for He	ating, Average Effici	ency (COP/EER 3.27), R410a Refrigerant				_
	24945.96	80498.08	1521099.34	0	0	254.99	-4413.06	1622385.3
Ducted System Air Sou	rce Heat Pump for Co	ooling, higher efficier	ncy (COP/EER 3.8), R	410a Refrigerant				_
	24945.96	80498.08	1300830.86	0	0	254.99	-4413.06	1402116.82
Upper Floors – Concret	te Slab, 172mm, 40MP	a, 3.8% reo (m2)						_
	896854.38	0	0	0	0	145881.79	-89031.92	953704.24
Windows, Residential A	luminium Single Glaze	e, fly screen						_
	415949.71	450592.62	0	0	0	3084.46	-12723.18	856903.6
Wall, External, Masonry,	double brick 90-50-	90 insulated with fo	oundations and finish	nes				_
	638285.14	86402.39	0	0	0	111484.03	-1074.05	835097.51
Roof – TimberTruss/Ste	elSheeting/25°Pitch							_
	525548.96	255999.47	0	0	0	18670.7	-42958.04	757261.09
Bottom 5 Impact Te	mplates							
Staircase, Concrete, 40	Mpa, 2% reo							
	87633.03	6809.07	0	0	0	18217.79	4371.29	117031.18
Door – HollowCoreTim	per/SteelJam/Painted	k						
	31727.34	43566.24	0	0	0	857.58	-9730.21	66420.95
LED Outdoor Lighting (F	Residential - Ultra Hig	h Efficiency 150lm/v	vatt), m2					
	1995.77	9414.94	52836.56	0	0	9.97	-172.68	64084.57
Door – SolidCoreTimbe	er/SteelJam/Painted (#)						
	9858.52	10722.77	0	0	0	264.28	-1492.81	19352.75
Solar PV System Reside	ential – Zone 3 (Perth	Sydney etc)						
	338645.96	616092.14	-6277118.31	0	0	20350.47	-57 <mark>1</mark> 9648.86	-11021678.61

6.8 Global Warming Potential Biogenic, GWP B (kg CO₂ eq)

Figure 21: Time series Global Warming Potential Biogenic, GWP B chart



Figure 22: Top Five Global Warming Potential Biogenic, GWP B chart

Highest and Lowest Impact Materials (kg CO_2 eq)

Initial Materials & Construction (A1–A5)	Use Stage Materials & Construction (B1-B5)	End of Life (C1–C4) R	ecycling & Energy Export (D)	Total
Top 10 Impact Materials				
Finished Products Electrical Goods Solar PV Panels Monocysta	Illine			
74.51	115.63	-8.35	-17.36	164.43
Cementitious Binders Mortars and Renders 1 cement : 4 sand				
76.1	13.34	0.04	0	89.48
Glazing Windows Aluminium Framed No Thermal Break Single	Glaze Domestic 50% Opening			
41.91	41.92	0.01	0	83.84
Ceramics Tiles Ceramic Tiles				
33.97	42.84	0.01	0	76.82
Resins and Adhesives Epoxy Resin				
36.67	36.67	0	0	73.34
Plaster and Mineral Derived Products 100% Primary Gypsum Pla	ster Unspecified			
34.92	34.93	0.02	0	69.87
Finished Products Electrical Goods Solar Inverters Solar Inverte	er Generic			
11.77	56.7	0	0	68.47
Ferrous Metals Steel Stainless Unspecified				
7.03	19.89	-0.02	29.92	56.83
Ceramics Porcelain Sanitary Products Toilet				
25.68	25.68	0	0	51.36
Ceramics Porcelain Sanitary Products Bath				
33.39	0	0	0	33.4
Bottom 5 Impact Materials				
Plaster and Mineral Derived Products 100% Primary Gypsum Pla	asterboard 12mm Sheets			-
-1085.26	-1085.25	0.01	0	-2170.5
Bricks, Blocks and Pavers Clay Bricks and Pavers Unspecified				-
-2343.13	0	0.19	0	-2342.94
Timber Sustainably Sourced Plywood Unspecified		_		_
-10417.02	0	5944.87	610.12	-3862.03
Timber Sustainably Sourced Particle Board Indoor	_	_		_
-6910.35	-2988.47	3602.03	739.34	-5557.45
Timber Sustainably Sourced Hardwood Unspecified				
-24232.85	0	12509.98	1280.06	-10442.82

Highest and Lowest Impact Templates (kg CO₂ eq)

	nitial Materials & Use S onstruction (A1- & Cor A5)		ntegrated Energy Use (B6)	Plug Load Energy Use (B6+)	Water Supply & Treatment (B7)	End of Life (C1-C4)	Recycling & Energy Export (D)	Total
Top 10 Impact Templa	tes							
Appliances, Residential Av	verage Op&Em							
	0.48	2.69	0	1534.33	0	0	0.92	1538.41
Electric Instantaneous Ho	ot Water System (HWS	_App)						
	4.27	18.95	1200.46	0	0	0.01	-0.29	1223.41
Refrigeration, Residential \	Well Ventilated Fridge	Recess						
	11	54.85	0	699.86	0	0	0.54	766.24
Water Use and Treatment	t (eTool Turbo)							
	0	0	0	0	605.45	0	0	605.45
Ducted System Air Source	e Heat Pump for Heatin	g, Average Efficie	ncy (COP/EER 3.27)), R410a Refrigerant				
	0.37	4.9	407.84	0	0	0	-0.03	413.09
Ducted System Air Source	e Heat Pump for Coolin	g, higher efficienc	y (COP/EER 3.8), R4	410a Refrigerant				
	0.37	4.9	348.79	0	0	0	-0.03	354.03
Cooking, Res Electric Over	n Induction Stove							
	-49.1	-196.32	411.71	0	0	-0.01	21.33	187.62
LED Residential Lighting (H	High Efficiency – 110lm/	watt)						
	1.33	8.16	130.46	0	0	0	0.1	140.05
Standard 1st Bathroom - V	WC/Shower-bath/Bas	n/WallTiles						
	75.31	52.07	0	0	0	0.03	2.42	129.83
Windows, Residential Alun	minium Single Glaze, fly	screen						
	43.2	44.21	0	0	0	0.02	-1.56	85.86
Bottom 5 Impact Tem	plates							
Wall, External, Masonry, do	puble brick 90-50-90	insulated with fou	ndations and finish	es				
	-2386.48	-318.94	0	0	0	397.84	81.61	-2225.97
Upper Floors – Concrete S	Slab, 172mm, 40MPa, 3	8% reo (m2)						
	-5829.7	0	0	0	0	3255.04	343.78	-2230.88
Solar PV System Resident	tial – Zone 3 (Perth Syd	ney etc)						
	99.81	186.43	-1683.05	0	0	-8.22	-1493.81	-2898.86
Kitchen Medium sized (inc	cl Equipment)							
	-6973.71	-3035.73	0	0	0	3643.01	754.54	-5611.9
Roof – TimberTruss/Steel	Sheeting/25°Pitch							
	-27137.36	-1995.85	0	0	0	13372.76	1460.13	-14300.32

7 Scenarios Summary Tables

7.1 Proposed Design Scenarios Summary

Table 11: While modelling the Proposed Design the following scenarios were modelled.

Scenario	GWP	ÖDP	AP	>+†i⊅ EP	C POCP	adpe	H ADPF	GWP B
Improved Design>								
RIBA Phase 4 – Technical Design 1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
RIBA Phase 4 – Technical Design 2	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
<proposed design=""></proposed>								

Strategies included in Proposed Design
 Strategies not included in Proposed Design

8 Low Impact Strategies

The following low impact design strategies were modelled in the LCA study to determine the relative benefits and aid the design decision making process.

The relative saving of each progressed recommendation against the Benchmark is provided in the following tables for each strategy. Further information regarding each strategy is also provided regarding motivation and logistical constraints.

8.1 Proposed Design Strategies

The following low impact strategies are included in the Proposed Design.

Design Strategy Performance	GWP	ODP	AP	>#∰ EP	FOCP	ADPE	H ADPF	GWP B
<improved design=""></improved>								
RIBA Phase 4 – Technical Design 1	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %
RIBA Phase 4 – Technical Design 2	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %
<proposed design=""></proposed>								

Table 12: Design Strategies in Proposed Design

8.1.1 RIBA Phase 4 - Technical Design 1

% Changes Against the Benchmark

Design Strategy Performance	GWP	ÖDP	۲ AP	₩₽ EP	FOCP	ADPE	ADPF	GWP B	
RIBA Phase 4 – Technical Design 1	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	1

Table 13: Impact savings (or increases) associated with the RIBA Phase 4 – Technical Design 1 as a percentage of the Proposed Design.

RapidLCA automated phase

8.1.2 RIBA Phase 4 – Technical Design 2

% Changes Against the Benchmark

Design Strategy Performance	GWP	ÖDP	۲ AP	₩₩₽ EP	C POCP	ADPE	H ADPF	GWP B
RIBA Phase 4 – Technical Design 2	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %

Table 14: Impact savings (or increases) associated with the RIBA Phase 4 - Technical Design 2 as a percentage of the Proposed Design.

RapidLCA automated phase

9 Conclusion

The report shows that the Proposed Design has lower Global Warming Potential Total, GWP impact than the Benchmark Design. The **Non-integrated Energy (B6+)** GWP Impacts are the most dominant life cycle module in the Proposed Design Design followed by the **Product Stage (A1A3)** and then **Replacement (B4)**.

Further analysis reveals:

- The Superstructure is the highest impact construction category,
- Domestic Water Heating is the highest operational impact by demand category,
- The Electricity is this highest impact operational impact by supply source,
- Glazing | Windows | Aluminium Framed | No Thermal Break | Single Glaze | Domestic 50% Opening is the highest impact material category,
- Electrical Equipment, Small with transport and tradestaff, Electricity is the highest people and equipment impact

2 strategies were modelled in the Proposed Design, the **RIBA Phase 4 – Technical Design 1** strategy had the highest saving followed by **RIBA Phase 4 – Technical Design 2**. See full LCA report for details of other environmental strategies.

In addition to GWP, other indicators were included in the study, the results of which are summerised below.

The Proposed Design shows an expected performance improvement against the Benchmark Design for 6 indicators:

- 54.23% **saving** in GWP impacts
- NaN% increase in ODP impacts
- 30.2% **saving** in AP impacts
- 14.42% saving in EP impacts
- 33.45% saving in POCP impacts
- 20.31% **saving** in ADPE impacts
- 55.23% **saving** in ADPF impacts
- 53.29% **saving** in GWP B impacts

Appendix A: Environmental Indicators Description

🚽 Global Warming Potential Total, GWP

Anthropogenic global warming is caused by an increase of greenhouse gasses (GHG) in the earth's atmosphere. These gasses reflect some of the heat radiated from the earth's surface that would normally escape into space back to the surface of the earth. Overtime this warms the earth. Common GHGs include CO2, N2O, CH4 and volatile organic compounds (VOCs). Global Warming Potential Total (GWP) is expressed in equivalent GHGs released, usually in kgCO2e.

Solo Solo Solo Warming Potential Total (GWP) = GWP Fossil + GWP Biogenic + GWP LULUC.

🐞 Ozone Depletion Potential, ODP

Ozone is formed and depleted naturally in the earth's stratosphere (between 15–40 km above the earth's surface). Halocarbon compounds are persistent synthetic halogen containing organic molecules that can reach the stratosphere leading to more rapid depletion of the ozone. As the ozone in the stratosphere is reduced more of the ultraviolet rays in sunlight can reach the earth's surface where they can cause skin cancer and reduced crop yields. Ozone Depletion Potential (ODP) is expressed in equivalent ozone depleting gasses (normally kgCFC11e).

Acidification Potential for Soil and Water, AP

Acidification is a consequence of acids (and other compounds which can be transformed into acids) being emitted to the atmosphere and subsequently deposited in surface soils and water. Increased acidity can result in negative consequences for flora and fauna in addition to increased corrosion of manmade structures (buildings vehicles etc.). Acidification Potential (AP) is an indicator of such damage and is usually measured in kgSO₂e

Here and the second sec

Over enrichment of aquatic ecosystems with nutrients leading to increased production of plankton, algae and higher aquatic plants leading to a deterioration of the water quality and a reduction in the value and/or the utilisation of the aquatic ecosystem. Eutrophication is primarily caused by surplus nitrogen and phosphorus. Sources of nutrients include agriculture (fertilisers and manure), aquaculture, municipal wastewater, and nitrogen oxide emissions from fossil fuel combustion.

🏩 Photochemical Ozone Creation Potential, POCP

Photochemical Ozone Creation Potential (POCP), commonly known as smog, is toxic to humans in high concentration. Although ozone is protective in the stratosphere at low levels it is problematic from both a health and nuisance perspective. Plant growth is also effected through damaged leaf surfaces and reduced photosynthesis. POCP is formed when sunlight and heat react with Volatile Organic Compounds (VOCs).

🖝 Abiotic Depletion Potential - Elements, ADPE

Abiotic Resource Depletion of energy (ADPM) is a measure of the extraction and consumption of primary resources from the earth. Such exploitation reduces resources available to future generations and as such must be managed.

🙀 Abiotic Depletion Potential – Fossil Fuels, ADPF

Abiotic Resource Depletion of energy (ARDE) is a measure of the extraction and consumption of non-renewable energy sources (primarily fossil fuels, but also inclusive of other energy sources such as uranium). Primary energy content of non-renewable energy sources including the embodied energy to extract, process and deliver the non renewable fuels, or manufacture, transport and install the renewable generator. Hence there is usually and non-renewable energy content associated with renewable fuels also.

🚽 Global Warming Potential Biogenic, GWP B

This indicator accounts for GWP from removals of CO2 into biomass from all sources except native forests, as transfer of carbon, sequestered by living biomass, from nature into the product system declared as GWP-biogenic. This indicator also accounts for GWP from transfer of any biogenic carbon from previous product systems into the product system under study. This indicator also covers biogenic emissions to air from biomass from all sources except native forests due to oxidation or degradation (e.g. combustion, solid waste disposal) as well as all transfer of biogenic carbon from biomass from all sources except native forests into subsequent product systems in the form of biogenic CO2.

APPLICATION FORM

Development Application - Urban Design Study

CITY OF VINCENT RECEIVED 8 March 2024

As part of the accompanying material for an application for development approval pursuant to Schedule 2, Part 8, Clause 63 of the Planning and Development (Local Planning Schemes) Regulations 2015, an urban design study is required for all developments visible from the public realm.

The urban design study is to be provided as drawings, 3D studies, and diagrams that interpret the development site's context into opportunities and constraints to generate early design parameters. The elements of the urban design study are based on Appendix 1 - Design Principles of the Built Form Policy.

Applicant [Applicant Details				
Name:	Daniel Cassettai				
Address:	7/405 Oxford Street				
Suburb:	Mt Hawthorn	Postcode:	6016		
Email Address:	dan@dcdesign.com.au				
Phone Number:	9201 9993				
Applicant Signature					

Prepared b	Prepared by				
Name:	Daniel Cassettai				
Address:	7/405 Oxford Street				
Suburb:	Mt Hawthorn	Postcode:	6016		
Email Address:	dan@dcdesign.com.au				
Phone Number:	9201 9993				
Applicant Signature					

Property Details				
Lot Number	4 & 8			
Address:	293 & 295 Oxford Street			
Suburb:	Leederville	Postcode:	6007	

Urban Design Study:

Please outline how each of the following elements have been addressed and attach any relevant or supporting photos, images, diagrams or drawings where applicable.

Applicant comment Description Context & Character Good design responds to and enhances the distinctive characteristics of a local area, contributing to a sense of place. The site has an approximate 2m slope running east to west (front to rear), over 40m. As a result, the development gradually Demonstrate how you have steps down in response to the topography of the site. Existing vegetation on the lot consists of trees, light shrubs, and grass Whilst the possibility of retaining the existing vegetation was not deemed viable, the design seeks to implement a landscaping reviewed the natural environment strategy that reorientates and maximises its presentation towards the streetscape and internal driveway. including topography, local flora and fauna. The Oxford Street Activity Corridor has a mixed and varied streetscape in terms of style and presentation. A range of single Demonstrate consideration of the and double storey dwellings are present, alongside pockets of multi-dwelling developments ranging in height from 3 to 4 storevs. This mix of established and newer developments presents a unique streetscape character, whereby a 'commercial site's streetscape character. feel is present towards the northern and southern extents of the activity corridor, whilst the central area has a distinct esidential flavor. On-street parking is available along most of the street, alongside cycling lanes. Pedestrian footpaths are ocated on both sides of the street. The established residential developments present on either side of the site have deeper setbacks from the street and Demonstrate review of the built predominantly have front facing gardens with fences. Whilst these are typically single storey, there are also examples of double storey group-dwelling buildings along the street, particularly with newer developments. These newer developments and natural environment of the nclude comme rcial, multi-dwelling and commercial premises with contemporary designs. There is a prevalence of small to nedium sized trees along the streetscape, located on both public land and within the enclosed front gardens of established local context to a radium of omes. 400m - 1000m. Demonstrate how the site's context Our design proposal seeks to balance the predominantly residential character of the street with the future aspirations of the Activity Corridor by presenting a contemporary design that takes material and built form cues from both. The contemporary design of the development along clean horizontal and vertical lines incorporates a dominant mix of rendered walls and large and character influenced the plass openings. Red brick, with a raw and rough finish, are used as feature elements that tie into the predominant material balette of established homes along the street. The development is also setback from the street to allow for front gardens with development. andscaping and small-medium sized trees. Consideration is also given to pedestrian and vehicle safety due to the adjacent footpath and on-street parking. The site has been amalgamated to ensure a single, central crossover, as opposed to two. This Consider the following: circulation spine allows vehicle and pedestrian access to the townhouses. • History of the local area; Heritage listed buildings in the area; • High quality contemporary buildings in the area; Materials, textures, patterns from high quality heritage / character as well as contemporary buildings in the area; and Movement patterns / laneways.

Landscape quality

Good design recognises that together landscape and buildings operate as an integrated and sustainable system, within a broader ecological context.

	Oxford Street is lined with mature trees, with single dwellings typically having street facing gardens enclosed by a front fence. These fences include a mix of low a high walls, both solid and permeable. Whilst established homes typically have trees visible from the street, newer commercial, grouped and mutil dwelling developments do not.
Demonstrate how the landscape quality of the streetscape and surrounding context has been incorporated into the building and landscape design.	Our design proposes lush gardens between the built form and Oxford Street, with small to medium trees. Planters have been used to create a layered, terrace, effect for visual interest along the street. In keeping with the some of the established homes along the street, portions of the gardens fronting Oxford Street are enclosed with fences – permeable and solid – to ensure an adequate level of privacy between the pedestrian side walk and on-street parking.

Description

Applicant comment

Built Form & Scale

Good design provides development with massing and height that is appropriate to its setting and successfully negotiates between existing built form and the intended future character of the local area.

negotiates between existing bant jon	m and the intended future character of the local area.
What is the building massing and height of the streetscape? How has this been incorporated into the design?	Whilst there is a dominance of established residential dwellings along the street which are typically single storey, there are also examples of double storey grouped-dwellings, particularly with newer developments. Alongside these buildings are pockets of multi-dwelling developments ranging in height from 3 to 4 storeys.
How does the development respond and contribute to the built form and scale of the streetscape?	Our proposal is a two-storey development that is in keeping with predominantly single and double storey dwellings found along the immediate context of the site. This provides a transition between established homes and the future aspirations of the activity corridor. A generous setback to the street has also been provided to reduce the impact of bulk and scale to the street and in keeping with the residential built form in the area.
Demonstrate how the development encourages an activated and vibrant streetscape environment.	The central driveway acts a view corridor for the inner townhouses that gradually transitions from a public to semi-private space. As a result, all courtyards and gardens have been designed to internally face the central driveway to ensure direct views of the street. The front facing gardens have been designed with permeable and open fencing to promote passive surveillance. This creates interaction between public and private spaces that foster interaction between the street and active outdoor areas, whilst still maintaining privacy for residents. Landscaping and a mixed material palette also create visual interest and vibrancy to the building's façade.
Functionality & Build Quality	
	s efficiently and effectively, balancing functional requirements to deliver
optimum benefit and performing well	l over the full life-cycle.
Demonstrate how the proposed design complements the use of the building.	Generous ground floor living spaces have been designed to allow occupants to live with a strong visual connection between indoor and outdoor active spaces. Sleeping and living areas have been separated between floors to ensure privacy and so that they can be conditioned independently from each other. Bin and service courtyards have been separated from the main courtyards to maximise the amenity of outdoor living spaces.
Sustainability Good design optimises the sustainabil economic outcomes.	lity of the built environment, delivering positive environmental, social and
Demonstrate how the building performance has been optimised using suitable orientation and layout of internal spaces.	Living spaces have been designed with openings spaced to ensure crossflow ventilation. Fans to bedrooms are also proposed, alongside solar PV systems, to minimise operational energy loads.
Amenity Good design optimises internal and ex living and working environments that	xternal amenity for occupants, visitors and neighbours, contributing to are comfortable and productive.
Demonstrate how the development optimises amenity for occupants, adjoining neighbours and onlookers	All townhouses are provided with sleeved, double parking, accessed from a central driveway. Ground floor living areas tie directly into the courtyards, which in turn benefit from views onto either the street or central mews driveway, which have been landscaped to provide a softer outlook. Openings are designed to ensure visual privacy of neighboring properties are maintained. Despite this, most bedrooms have been designed with clear, open views, overlooking courtyard tree canopies and green spaces.
Legibility Good design results in buildings and p help people find their way around.	places that are legible, with clear connections and memorable elements to
Demonstrate how the design allow users and visitors to navigate through the development.	All entry's into the townhouses are visible from the central driveway and easily accessible from the street. Canopies ensure adequate cover and protection from the elements, and clearly define and identity the entry's for visitors. This is also aided by the change in floor material finishes.
Safety Good design optimises safety and sec and use.	urity, minimising the risk of personal harm and supporting safe behaviour
Demonstrate how the layout of buildings on site provides safe and high level of amenity for residents.	Consideration is also given to pedestrian safety, with the site amalgamated to ensure a single, central crossover, as opposed to two. This circulation spine allows vehicle and pedestrian access to the townhouses. Street facing townhouses have been designed with a mix of solid and permeable materials to balance street surveillance and privacy from pedestrians and on-street parking. All courtyards and gardens to the remaining townhouses have been designed to internally face the central driveway, ensuring passive surveillance. This is further increased by the design of large openings to the upper floor bedrooms overlooking the driveways. Entries to the townhouses are visually open not concealed from view.

Description

Applicant comment

Community

development.

Good design responds to local community needs as well as the wider social context, providing buildings and spaces that support a diverse range of people and facilitate social interaction.

Demonstrate how the development contributes to a sense of community, encouraging social engagement and enabling stronger communities.	The design benefits from a contemporary material palette with large expanses of glazing, combined with street level elements such as fencing, landscaping and planters. The layering of these forms and materials creates a visually engaging façade that ties into the existing streetscape. Orientating outdoor living areas externally towards the driveway and street allows for outside entertainment and socialising, whereby interaction with neighbouring residents are encouraged.				
Aesthetics Good design is the product of a skilled, judicious design process that results in attractive and inviting buildings and places that engage the senses.					
Demonstrate how the surrounding context and character has been incorporated into the design of the	Our proposal is a two-storey development that is in keeping with predominantly single and double storey dwellings found along the immediate context of the site. Clean horizontal and vertical lines have been incorporated into the design, with mix of rendered walls and large glass openings. Red brick, with a raw and rough finish, are used as feature elements that tie into the predominant material palette of established homes along the street. In keeping with the some of the established homes along the street, portions of the gardens fronting Oxford Street are enclosed with fences.				

Please complete all sections of this application and send to mail@vincent.wa.gov.au along with all relevant attachments. Alternatively, you can submit your application in person at our Administration Centre (244 Vincent Street, Leederville) or post to PO Box 82, Leederville, 6902.